BIFURCATION ANALYSIS OF A DELAYED PREDATOR-PREY MODEL OF PREY MIGRATION AND PREDATOR SWITCHING

被引:10
|
作者
Xu, Changjin [1 ,2 ]
Tang, Xianhua [2 ]
Liao, Maoxin [2 ]
机构
[1] Guizhou Univ Finance & Econ, Sch Math & Stat, Guizhou Key Lab Econ Syst Simulat, Guiyang 550004, Peoples R China
[2] Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
predator-prey model; migration; switching; stability; Hopf bifurcation; GLOBAL STABILITY; HOPF-BIFURCATION; PERIODIC-SOLUTIONS; EPIDEMIC MODEL; DISPERSAL; SYSTEM; PERMANENCE; DIFFUSION; DYNAMICS;
D O I
10.4134/BKMS.2013.50.2.353
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a class of delayed predator-prey models of prey migration and predator switching is considered. By analyzing the associated characteristic transcendental equation, its linear stability is investigated and Hopf bifurcation is demonstrated. Some explicit formulae for determining the stability and the direction of the Hopf bifurcation periodic solutions bifurcating from Hopf bifurcations are obtained by using the normal form theory and center manifold theory. Some numerical simulations for justifying the theoretical analysis are also provided. Finally, biological explanations and main conclusions are given.
引用
收藏
页码:353 / 373
页数:21
相关论文
共 50 条
  • [11] STABILITY AND BIFURCATION ANALYSIS IN A DELAYED PREDATOR-PREY SYSTEM
    Jiang, Zhichao
    Zhang, Wenzhi
    Huo, Dongsheng
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2009, 2 (04) : 483 - 506
  • [12] Stability analysis and bifurcation of a predator-prey model with time delay in prey and diseases in predator
    Department of Mathematics and Physics, Shijiazhuang Tiedao University, No. 17, East Bei’erhuan Road, Qiaodong District, Shijiazhuang
    050043, China
    Int. J. Innov. Comput. Inf. Control, 1 (43-56):
  • [13] Bifurcation analysis of a diffusive predator-prey model with prey social behavior and predator harvesting
    Mezouaghi, Abdelheq
    Djilali, Salih
    Bentout, Soufiane
    Biroud, Kheireddine
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (02) : 718 - 731
  • [14] Hopf bifurcation analysis of a predator-prey model
    Nie, D. D.
    Xiong, Z. L.
    Wang, W.
    BIOINFORMATICS AND BIOMEDICAL ENGINEERING: NEW ADVANCES, 2016, : 75 - 83
  • [15] Bifurcation analysis of an intraguild predator-prey model
    Narimani, Hajar
    Ghaziani, Reza Khoshsiar
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (04):
  • [16] Bifurcation Behavior Analysis in a Predator-Prey Model
    Wang, Nan
    Zhao, Min
    Yu, Hengguo
    Dai, Chuanjun
    Wang, Beibei
    Wang, Pengfei
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2016, 2016
  • [17] Bifurcation analysis of an intraguild predator-prey model
    Hajar Narimani
    Reza Khoshsiar Ghaziani
    Computational and Applied Mathematics, 2022, 41
  • [18] STABILITY ANALYSIS AND BIFURCATION OF A PREDATOR-PREY MODEL WITH TIME DELAY IN PREY AND DISEASES IN PREDATOR
    Wang, Qiubao
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2015, 11 (01): : 43 - 56
  • [19] Analysis of a predator-prey system with predator switching
    Q. J. A. Khan
    E. Balakrishnan
    G. C. Wake
    Bulletin of Mathematical Biology, 2004, 66 : 109 - 123
  • [20] Analysis of a predator-prey system with predator switching
    Khan, QJA
    Balakrishnan, E
    Wake, GC
    BULLETIN OF MATHEMATICAL BIOLOGY, 2004, 66 (01) : 109 - 123