Quantitative relations between short intervals and exceptional sets of cubic Waring-Goldbach problem

被引:0
|
作者
Feng, Zhao [1 ]
机构
[1] North China Univ Water Resources & Elect Power, Sch Math & Informat Sci, Zhengzhou 450046, Henan, Peoples R China
来源
OPEN MATHEMATICS | 2017年 / 15卷
基金
中国国家自然科学基金;
关键词
Circle method; Exponential sums over primes; Short intervals; Quantitative relations; PRIME VARIABLES; SUMS; EQUATIONS; THEOREM; SQUARES; CUBES;
D O I
10.1515/math-2017-0130
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we are able to prove that almost all integers n satisfying some necessary congruence conditions are the sum of j almost equal prime cubes with j = 7, 8, i. e., N = p(1)(3) +... + p(j)(3) with vertical bar p(i) -(N/j)(1/3)vertical bar <= N1/3-delta+epsilon (1 <= i <= j), for some 0 < delta <= 1/90. Furthermore, we give the quantitative relations between the length of short intervals and the size of exceptional sets.
引用
收藏
页码:1517 / 1529
页数:13
相关论文
共 50 条