Improving ranking performance with cost-sensitive ordinal classification via regression

被引:11
|
作者
Ruan, Yu-Xun [1 ]
Lin, Hsuan-Tien [2 ]
Tsai, Ming-Feng [3 ]
机构
[1] Natl Taiwan Univ, Grad Inst Networking & Multimedia, Taipei 10617, Taiwan
[2] Natl Taiwan Univ, Dept Comp Sci & Informat Engn, Taipei 10617, Taiwan
[3] Natl Chengchi Univ, Dept Comp Sci & Program Digital Content & Technol, Taipei 11605, Taiwan
来源
INFORMATION RETRIEVAL | 2014年 / 17卷 / 01期
关键词
List-wise ranking; Cost-sensitive; Regression; Reduction;
D O I
10.1007/s10791-013-9219-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a novel ranking approach, cost-sensitive ordinal classification via regression (COCR), which respects the discrete nature of ordinal ranks in real-world data sets. In particular, COCR applies a theoretically sound method for reducing an ordinal classification to binary and solves the binary classification sub-tasks with point-wise regression. Furthermore, COCR allows us to specify mis-ranking costs to further improve the ranking performance; this ability is exploited by deriving a corresponding cost for a popular ranking criterion, expected reciprocal rank (ERR). The resulting ERR-tuned COCR boosts the benefits of the efficiency of using point-wise regression and the accuracy of top-rank prediction from the ERR criterion. Evaluations on four large-scale benchmark data sets, i.e., "Yahoo! Learning to Rank Challenge" and "Microsoft Learning to Rank," verify the significant superiority of COCR over commonly used regression approaches.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [11] Improving Classification with Cost-Sensitive Approach and Support Vector Machine
    Muntean, Maria
    Ileana, Ioan
    Rotar, Corina
    Valean, Honoriu
    9TH ROEDUNET IEEE INTERNATIONAL CONFERENCE, 2010, : 180 - +
  • [12] Cost-sensitive KNN classification
    Zhang, Shichao
    NEUROCOMPUTING, 2020, 391 : 234 - 242
  • [13] Adversarial Cost-Sensitive Classification
    Asif, Kaiser
    Xing, Wei
    Behpour, Sima
    Ziebart, Brian D.
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2015, : 92 - 101
  • [14] Cost-sensitive Texture Classification
    Schaefer, Gerald
    Krawczyk, Bartosz
    Doshi, Niraj P.
    Nakashima, Tomoharu
    2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 105 - 108
  • [15] Cost-Sensitive Online Classification
    Wang, Jialei
    Zhao, Peilin
    Hoi, Steven C. H.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2014, 26 (10) : 2425 - 2438
  • [16] Active Learning for Cost-Sensitive Classification Using Logistic Regression Model
    Zhou, Siyuan
    Zhang, Ya
    PROCEEDINGS OF 2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA ANALYSIS (ICBDA), 2016, : 284 - 287
  • [17] Cost-Sensitive Online Classification
    Wang, Jialei
    Zhao, Peilin
    Hoi, Steven C. H.
    12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2012), 2012, : 1140 - 1145
  • [18] Probabilistic Reframing for Cost-Sensitive Regression
    Hernandez-Orallo, Jose
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2014, 8 (04)
  • [19] Cost-sensitive Parsimonious Linear Regression
    Goetschalckx, Robby
    Driessens, Kurt
    Sanner, Scott
    ICDM 2008: EIGHTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2008, : 809 - +
  • [20] Improving Imbalanced Dialogue Act Classification Using Cost-Sensitive Learning
    Miyagi, Takaaki
    Endo, Satoshi
    2022 JOINT 12TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS AND 23RD INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT SYSTEMS (SCIS&ISIS), 2022,