Improving ranking performance with cost-sensitive ordinal classification via regression

被引:11
|
作者
Ruan, Yu-Xun [1 ]
Lin, Hsuan-Tien [2 ]
Tsai, Ming-Feng [3 ]
机构
[1] Natl Taiwan Univ, Grad Inst Networking & Multimedia, Taipei 10617, Taiwan
[2] Natl Taiwan Univ, Dept Comp Sci & Informat Engn, Taipei 10617, Taiwan
[3] Natl Chengchi Univ, Dept Comp Sci & Program Digital Content & Technol, Taipei 11605, Taiwan
来源
INFORMATION RETRIEVAL | 2014年 / 17卷 / 01期
关键词
List-wise ranking; Cost-sensitive; Regression; Reduction;
D O I
10.1007/s10791-013-9219-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a novel ranking approach, cost-sensitive ordinal classification via regression (COCR), which respects the discrete nature of ordinal ranks in real-world data sets. In particular, COCR applies a theoretically sound method for reducing an ordinal classification to binary and solves the binary classification sub-tasks with point-wise regression. Furthermore, COCR allows us to specify mis-ranking costs to further improve the ranking performance; this ability is exploited by deriving a corresponding cost for a popular ranking criterion, expected reciprocal rank (ERR). The resulting ERR-tuned COCR boosts the benefits of the efficiency of using point-wise regression and the accuracy of top-rank prediction from the ERR criterion. Evaluations on four large-scale benchmark data sets, i.e., "Yahoo! Learning to Rank Challenge" and "Microsoft Learning to Rank," verify the significant superiority of COCR over commonly used regression approaches.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [1] Improving ranking performance with cost-sensitive ordinal classification via regression
    Yu-Xun Ruan
    Hsuan-Tien Lin
    Ming-Feng Tsai
    Information Retrieval, 2014, 17 : 1 - 20
  • [2] Reduction from Cost-Sensitive Ordinal Ranking to Weighted Binary Classification
    Lin, Hsuan-Tien
    Li, Ling
    NEURAL COMPUTATION, 2012, 24 (05) : 1329 - 1367
  • [3] Regression level set estimation via cost-sensitive classification
    Scott, Clayton
    Davenport, Mark
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2007, 55 (06) : 2752 - 2757
  • [4] Cost-sensitive ordinal regression for fully automatic facial beauty assessment
    Yan, Haibin
    NEUROCOMPUTING, 2014, 129 : 334 - 342
  • [5] Improving Ranking-Oriented Defect Prediction Using a Cost-Sensitive Ranking SVM
    Yu, Xiao
    Liu, Jin
    Keung, Jacky Wai
    Li, Qing
    Bennin, Kwabena Ebo
    Xu, Zhou
    Wang, Junping
    Cui, Xiaohui
    IEEE TRANSACTIONS ON RELIABILITY, 2020, 69 (01) : 139 - 153
  • [6] Cost-Sensitive AdaBoost Algorithm for Ordinal Regression Based on Extreme Learning Machine
    Riccardi, Annalisa
    Fernandez-Navarro, Francisco
    Carloni, Sante
    IEEE TRANSACTIONS ON CYBERNETICS, 2014, 44 (10) : 1898 - 1909
  • [7] Penalized Least Squares Classifier: Classification by Regression Via Iterative Cost-Sensitive Learning
    Zhang, Siyuan
    Xie, Linbo
    NEURAL PROCESSING LETTERS, 2023, 55 (07) : 8809 - 8828
  • [8] Penalized Least Squares Classifier: Classification by Regression Via Iterative Cost-Sensitive Learning
    Siyuan Zhang
    Linbo Xie
    Neural Processing Letters, 2023, 55 : 8809 - 8828
  • [9] Cost-sensitive learning of SVM for ranking
    Xu, Jun
    Cao, Yunbo
    Li, Hang
    Huang, Yalou
    MACHINE LEARNING: ECML 2006, PROCEEDINGS, 2006, 4212 : 833 - 840
  • [10] Cost-Sensitive Listwise Ranking Approach
    Lu, Min
    Xie, MaoQiang
    Wang, Yang
    Liu, Jie
    Huang, YaLou
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT I, PROCEEDINGS, 2010, 6118 : 358 - +