The state of external circuit affects the stability of dye-sensitized solar cells

被引:5
|
作者
Poskela, Aapo [1 ]
Miettunen, Kati [1 ,2 ]
Tiihonen, Armi [1 ]
Lund, Peter D. [1 ]
机构
[1] Aalto Univ, Dept Appl Phys, New Energy Technol Grp, POB 15100, FI-00076 Aalto, Finland
[2] Aalto Univ, Dept Bioprod & Biosyst, Biobased Colloids & Mat, POB 16300, FI-00076 Aalto, Finland
基金
芬兰科学院;
关键词
Photovoltaics; Degradation; Aging; Electrical state; LONG-TERM STABILITY; EFFICIENCY; ELECTROLYTE; PERFORMANCE;
D O I
10.1016/j.electacta.2018.04.117
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
We found that the electrical state in which dye solar cells operate affect their ageing. Three states were analysed: open-circuit (OC), short circuit (SC), and under maximum power point (MPP)/load. OC and SC are more or less atypical states, which are relevant while storing cells or in the event of malfunction, whereas the MPP/load corresponds to real life operation of the cells. Our results indicate that keeping the cells at OC or near the MPP lead to practically identical stability, whilst the cells at SC degraded much faster in a 1000 h light soaking test. The underlying cause for the degradation of all the cells was the loss of tri-iodide (i.e. limiting charge carriers) in the electrolyte. While the degradation mechanism appears to be the same, the loss rate of tri-iodide was about five times faster with SC than with OC and MPP cells. In the SC cells, the loss of tri-iodide decreased both the short-circuit current and fill factor resulting in a 36% efficiency loss by the end of the test. In contrast, the efficiency of the OC and load cells remained quite stable throughout the test. Since OC is the most commonly used state in aging tests, it is good news for ageing studies that the real life MPP state and the OC state yield roughly similar results. The identification of the degradation pathway, the loss of charge carriers, and the related degradation rate were used to estimate the remaining lifetime of cells which did not degrade during the 1000 h test. Based on the degradation rate related to the charge carrier loss, full degradation of the OC and MPP cells is expected in approximately 3000 h of operational time. (c) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:59 / 66
页数:8
相关论文
共 50 条
  • [11] IMPROVING STABILITY OF CHLOROPHYLL AS NATURAL DYE FOR DYE-SENSITIZED SOLAR CELLS
    Arifin, Zainal
    Soeparman, Sudjito
    Widhiyanuriyawan, Denny
    Suyitno
    Setyaji, Argatya Tara
    JURNAL TEKNOLOGI, 2018, 80 (01): : 27 - 33
  • [12] Dye-sensitized solar cells
    Grätzel, M
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS, 2003, 4 (02) : 145 - 153
  • [13] Dye-Sensitized Solar Cells
    Tobin, Laura L.
    Sheridan, John T.
    WOMEN IN PHYSICS, 2013, 1517 : 194 - 194
  • [14] Amphiphilic dye for solid-state dye-sensitized solar cells
    Schmidt-Mende, L
    Zakeeruddin, SM
    Gratzel, M
    MATERIALS FOR PHOTOVOLTAICS, 2005, 836 : 11 - 15
  • [15] High Open-Circuit Voltage Solid-State Dye-Sensitized Solar Cells with Organic Dye
    Chen, Peter
    Yum, Jun Ho
    De Angelis, Filippo
    Mosconi, Edoardo
    Fantacci, Simona
    Moon, Soo-Jin
    Baker, Robin Humphry
    Ko, Jaejung
    Nazeeruddin, Md. K.
    Graetzel, Michael
    NANO LETTERS, 2009, 9 (06) : 2487 - 2492
  • [16] Investigating the Role of Dye Dipole on Open Circuit Voltage in Solid-State Dye-Sensitized Solar Cells
    Pandey, Shyam S.
    Lee, Kyung-Young
    Hayat, Azwar
    Ogomi, Yuhei
    Hayase, Shuzi
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2011, 50 (06)
  • [17] Dye aggregation in dye-sensitized solar cells
    Zhang, Lei
    Cole, Jacqueline M.
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (37) : 19541 - 19559
  • [18] Dye-Sensitized Solid-State Heterojunction Solar Cells
    Michael Grätzel
    MRS Bulletin, 2005, 30 : 23 - 27
  • [19] Dye-sensitized solid-state heterojunction solar cells
    Grätzel, M
    MRS BULLETIN, 2005, 30 (01) : 23 - 27
  • [20] Solid-State Photogalvanic Dye-Sensitized Solar Cells
    Berhe, Seare A.
    Gobeze, Habtom B.
    Pokharel, Sundari D.
    Park, Eunsol
    Youngblood, W. Justin
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (13) : 10696 - 10705