Chlorogenic acid increased 5-hydroxymethylfurfural formation when heating fructose alone or with aspartic acid at two pH levels

被引:48
|
作者
Zhang, Zhenhua [1 ]
Zou, Yueyu [1 ]
Wu, Taigang [1 ]
Huang, Caihuan [1 ]
Pei, Kehan [1 ]
Zhang, Guangwen [1 ]
Lin, Xiaohua [1 ]
Bai, Weibin [1 ]
Ou, Shiyi [1 ]
机构
[1] Jinan Univ, Dept Food Sci & Engn, Guangzhou 510632, Guangdong, Peoples R China
关键词
HMF; Chlorogenic acid; 3-Deoxosone; Underlying mechanism; ACRYLAMIDE FORMATION; IDENTIFICATION; SUCROSE; SUGARS; COFFEE; FOOD; HMF;
D O I
10.1016/j.foodchem.2015.06.041
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Chlorogenic acid (CGA) is a phenolic acid that ubiquitously exists in fruits. This work aims to investigate whether and how CGA influences HMF formation during heating fructose alone, or with an amino acid. The results showed that that CGA increased 5-hydroxymethylfurfural (HMF) formation. At pH 5.5 and 7.0, the addition of 5.0 mu mol/ml CGA increased HMF formation by 49.4% and 25.2%, respectively when heating fructose alone, and by 9.0% and 16.7%, respectively when heating fructose with aspartic acid. CGA significantly increased HMF formation by promoting 3-deoxosone formation, and its conversion to HMF by inhibiting HMF elimination, especially in the Maillard reaction system. A comparison of the catalytic capacity of CGA with its six analogous compounds showed that both its di-hydroxyphenyl and carboxyl groups function in increasing HMF formation. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:832 / 835
页数:4
相关论文
共 50 条
  • [31] Synthesis of 5-hydroxymethylfurfural from fructose catalyzed by sulfonated carbon-based solid acid
    He, Qiao
    Lu, Yuchan
    Peng, Qiao
    Chen, Wenhai
    Fan, Guozhi
    Chai, Bo
    Song, Guangsen
    BIOMASS CONVERSION AND BIOREFINERY, 2023, 13 (10) : 9195 - 9203
  • [32] Sulfonic acid-functionalized hierarchical SAPO-34 for fructose dehydration to 5-hydroxymethylfurfural
    Zhonghai Liu
    Zhenzhu Sun
    Dongling Qin
    Gang Yang
    Reaction Kinetics, Mechanisms and Catalysis, 2019, 128 : 523 - 538
  • [33] 5-Hydroxymethylfurfural production from dehydration of fructose catalyzed by Aquivion@silica solid acid
    Dou, Youwei
    Zhou, Shuai
    Oldani, Claudio
    Fang, Wenhao
    Cao, Qiue
    FUEL, 2018, 214 : 45 - 54
  • [34] Bifunctional Imidazole-Benzenesulfonic Acid Deep Eutectic Solvent for Fructose Dehydration to 5-Hydroxymethylfurfural
    Chencong Ruan
    Fan Mo
    Hao Qin
    Hongye Cheng
    Lifang Chen
    Zhiwen Qi
    Catalysis Letters, 2021, 151 : 445 - 453
  • [35] Efficient dehydration of fructose to 5-hydroxymethylfurfural over sulfonated carbon sphere solid acid catalysts
    Zhao, Jun
    Zhou, Chunmei
    He, Chao
    Dai, Yihu
    Jia, Xinli
    Yang, Yanhui
    CATALYSIS TODAY, 2016, 264 : 123 - 130
  • [36] Synthesis of 5-hydroxymethylfurfural from fructose catalyzed by sulfonated carbon-based solid acid
    Qiao He
    Yuchan Lu
    Qiao Peng
    Wenhai Chen
    Guozhi Fan
    Bo Chai
    Guangsen Song
    Biomass Conversion and Biorefinery, 2023, 13 : 9195 - 9203
  • [37] Efficient and reusable solid acid catalysts for the synthesis of 5-hydroxymethylfurfural from dehydration of fructose in water
    Dai, Sheng
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [38] Polymeric Ionic Hybrid as Solid Acid Catalyst for the Selective Conversion of Fructose and Glucose to 5-Hydroxymethylfurfural
    Li, Hu
    He, Xudong
    Zhang, Qiuyun
    Chang, Fei
    Xue, Wei
    Zhang, Yuping
    Yang, Song
    ENERGY TECHNOLOGY, 2013, 1 (2-3) : 151 - 156
  • [39] Development of TiO2-Carbon Composite Acid Catalyst for Dehydration of Fructose to 5-Hydroxymethylfurfural
    Songo, Morongwa Martha
    Moutloali, Richard
    Ray, Suprakas Sinha
    CATALYSTS, 2019, 9 (02):
  • [40] Preparation of Acicular Mesoporous Char Sulfonic Acid and Its Application for Conversion of Fructose to 5-Hydroxymethylfurfural
    Zhang, Shuang
    Han, Xiaohui
    Liu, Yanjie
    Liu, Ling
    Yang, Jiajun
    Zhang, Long
    BIORESOURCES, 2021, 16 (01) : 324 - 338