An asymptotic expansion for local-stochastic volatility with jump models

被引:3
|
作者
Shiraya, Kenichiro [1 ]
Takahashi, Akihiko [1 ]
机构
[1] Univ Tokyo, Grad Sch Econ, Tokyo, Japan
关键词
Asymptotic expansion; local volatility; stochastic volatility; jump-diffusion; AVERAGE OPTIONS;
D O I
10.1080/17442508.2015.1136630
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper develops an asymptotic expansion method for general stochastic differential equations with jumps and their functions. By applying the method, we derive an explicit approximation formula for pricing options on functions of multiple assets under local-stochastic volatility with jump models. Moreover, we present numerical examples for pricing basket options based on the parameters calibrated to the actual market data, which confirms the validity of our method in practice.
引用
收藏
页码:65 / 88
页数:24
相关论文
共 50 条
  • [41] A Heston local-stochastic volatility model for optimal investment-reinsurance strategy with a defaultable bond in an ambiguous environment
    Wang, Ge
    Huang, Menglei
    Zhou, Qing
    Wu, Weixing
    Xiao, Weilin
    PROBABILITY UNCERTAINTY AND QUANTITATIVE RISK, 2023, 8 (04): : 499 - 522
  • [42] Asymptotic expansion for Barndorff-Nielsen and Shephard's stochastic volatility model
    Masuda, H
    Yoshida, N
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2005, 115 (07) : 1167 - 1186
  • [43] Asymptotic expansion of European options with mean-reverting stochastic volatility dynamics
    Hu, Jun
    Kanniainen, Juho
    FINANCE RESEARCH LETTERS, 2015, 14 : 1 - 10
  • [44] A subdiffusive stochastic volatility jump model
    Dupret, Jean-Loup
    Hainaut, Donatien
    QUANTITATIVE FINANCE, 2021,
  • [45] A subdiffusive stochastic volatility jump model
    Dupret, Jean-Loup
    Hainaut, Donatien
    QUANTITATIVE FINANCE, 2023, 23 (06) : 979 - 1002
  • [46] ASYMPTOTIC BEHAVIOR OF DISTRIBUTION DENSITIES IN MODELS WITH STOCHASTIC VOLATILITY. I
    Gulisashvili, Archil
    Stein, Elias M.
    MATHEMATICAL FINANCE, 2010, 20 (03) : 447 - 477
  • [47] Hedging of options for jump-diffusion stochastic volatility models by Malliavin calculus
    Minoo Bakhshmohammadlou
    Rahman Farnoosh
    Mathematical Sciences, 2021, 15 : 337 - 343
  • [48] Exact simulation of option Greeks under stochastic volatility and jump diffusion models
    Broadie, M
    Kaya, Ö
    PROCEEDINGS OF THE 2004 WINTER SIMULATION CONFERENCE, VOLS 1 AND 2, 2004, : 1607 - 1615
  • [49] Hedging of options for jump-diffusion stochastic volatility models by Malliavin calculus
    Bakhshmohammadlou, Minoo
    Farnoosh, Rahman
    MATHEMATICAL SCIENCES, 2021, 15 (04) : 337 - 343
  • [50] Importance sampling applied to Greeks for jump-diffusion models with stochastic volatility
    De Diego, Sergio
    Ferreira, Eva
    Nualart, Eulalia
    JOURNAL OF COMPUTATIONAL FINANCE, 2018, 22 (01) : 79 - 105