Li2O2 oxidation: the charging reaction in the aprotic Li-O2 batteries

被引:18
|
作者
Cui, Qinghua [1 ,2 ]
Zhang, Yelong [1 ,2 ]
Ma, Shunchao [1 ,2 ]
Peng, Zhangquan [1 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Elect Chem, Changchun 130022, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100039, Peoples R China
关键词
Aprotic Li-O-2 battery; Li2O2; oxidation; Morphology; Kinetics; Initial location upon oxidation; Charge transport; KINETIC OVERPOTENTIALS; OXYGEN REDUCTION; TRANSPORT; ELECTRON; ELECTROCHEMISTRY; EVOLUTION;
D O I
10.1007/s11434-015-0837-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Aprotic Li-O-2 battery has attracted a great deal of interest because of its high theoretical energy density that is far beyond what the best Li-ion technologies can achieve. However, the present Li-O-2 batteries suffer from the low energy efficiency that is limited mainly by the high overpotentials required to re-oxidize Li2O2, the discharge product. Over the past few years, considerable research efforts have been devoted to the understanding of the Li2O2 oxidation reactions. Here, we summarize the results obtained from the fundamental study of the Li2O2 oxidation, including its morphology, reaction route, kinetics, the initial location upon oxidation and the charge transport within Li2O2. A better mechanistic understanding of the Li2O2 oxidation reaction will provide a solid foundation for the realization of practical Li-O-2 cells with a higher energy efficiency.
引用
收藏
页码:1227 / 1234
页数:8
相关论文
共 50 条
  • [21] Screening for superoxide reactivity in Li-O2 batteries: Effect on Li2O2/LiOH crystallization
    Nazar, L.F. (lfnazar@uwaterloo.ca), 1600, American Chemical Society (134):
  • [22] Tuning the structure and morphology of Li2O2 by controlling the crystallinity of catalysts for Li-O2 batteries
    Dou, Yaying
    Wang, Xin-Gai
    Wang, Dashuai
    Zhang, Qinming
    Wang, Chengyi
    Chen, Gang
    Wei, Yingjin
    Zhou, Zhen
    CHEMICAL ENGINEERING JOURNAL, 2021, 409
  • [23] Influence of Li2O2 morphology on oxygen reduction and evolution kinetics in Li-O2 batteries
    Gallant, Betar M.
    Kwabi, David G.
    Mitchell, Robert R.
    Zhou, Jigang
    Thompson, Carl V.
    Shao-Horn, Yang
    ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (08) : 2518 - 2528
  • [24] Lithium and oxygen vacancies and their role in Li2O2 charge transport in Li-O2 batteries
    Varley, J. B.
    Viswanathan, V.
    Norskov, J. K.
    Luntz, A. C.
    ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (02) : 720 - 727
  • [25] Probing the reaction interface in Li-O2 batteries using electrochemical impedance spectroscopy: dual roles of Li2O2
    Huang, Jun
    Tong, Bo
    CHEMICAL COMMUNICATIONS, 2017, 53 (83) : 11418 - 11421
  • [26] Potential-Dependent Generation of O2- and LiO2 and Their Critical Roles in O2 Reduction to Li2O2 in Aprotic Li-O2 Batteries
    Zhang, Yelong
    Zhang, Xinmin
    Wang, Jiawei
    McKee, William C.
    Xu, Ye
    Peng, Zhangquan
    JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (07): : 3690 - 3698
  • [27] The initial stages of Li2O2 formation during oxygen reduction reaction in Li-O2 batteries: The significance of Li2O2 in charge-transfer reactions within devices
    Daniela M.Josepetti
    Bianca P.Sousa
    Simone A.J.Rodrigues
    Renato G.Freitas
    Gustavo Doubek
    Journal of Energy Chemistry, 2024, 88 (01) : 223 - 231
  • [28] The initial stages of Li2O2 formation during oxygen reduction reaction in Li-O2 batteries: The significance of Li2O2 in charge-transfer reactions within devices
    Josepetti, Daniela M.
    Sousa, Bianca P.
    Rodrigues, Simone A. J.
    Freitas, Renato G.
    Doubek, Gustavo
    JOURNAL OF ENERGY CHEMISTRY, 2024, 88 : 223 - 231
  • [29] Controlling Reversible Expansion of Li2O2 Formation and Decomposition by Modifying Electrolyte in Li-O2 Batteries
    Lin, Xiaodong
    Yuan, Ruming
    Cao, Yong
    Ding, Xiaobing
    Cai, Senrong
    Han, Bowen
    Hong, Yuhao
    Zhou, Zhiyou
    Yang, Xulai
    Gong, Lei
    Zheng, Mingsen
    Dong, Quanfeng
    CHEM, 2018, 4 (11): : 2685 - 2698
  • [30] The Role of Electrolyte Solvent Stability and Electrolyte Impurities in the Electrooxidation of Li2O2 in Li-O2 Batteries
    Meini, Stefano
    Solchenbach, Sophie
    Piana, Michele
    Gasteiger, Hubert A.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (09) : A1306 - A1314