Enhancement of Krylov Subspace Spectral Methods by Block Lanczos Iteration

被引:0
|
作者
Lambers, James V. [1 ]
机构
[1] Stanford Univ, Dept Energy Resources Engn, Stanford, CA 94305 USA
关键词
spectral methods; Gaussian quadrature; variable-coefficient; block Lanczos method; stability; heat equation;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a modification of Krylov Subspace Spectral (KSS) Methods, which build on the work of Golub, Meurant and others pertaining to moments and Gaussian quadrature to produce high-order accurate approximate solutions to variable-coefficient time-dependent PDE. Whereas KSS methods currently use Lanczos iteration to compute the needed quadrature rules, the modification uses block Lanczos iteration in order to avoid the need to compute two quadrature rules for each component of the solution, or use perturbations of quadrature rules. It will be shown that under reasonable assumptions on the coefficients of the problem, a 1-node KSS method is unconditionally stable, and methods with more than one node are shown to possess favorable stability properties as well. Numerical results suggest that block KSS methods are significantly more accurate than their non-block counterparts.
引用
收藏
页码:347 / 350
页数:4
相关论文
共 50 条