Nitrogen doping effects on the structure behavior and the field emission performance of double-walled carbon nanotubes

被引:90
|
作者
Chun, Kyoung-Yong [1 ]
Lee, Heon Sang [2 ]
Lee, Cheol Jin [1 ]
机构
[1] Korea Univ, Sch Elect Engn, Seoul 136701, South Korea
[2] LG Chem Ltd, Ctr Technol, Taejon 305343, South Korea
关键词
CHEMICAL-VAPOR-DEPOSITION; ELECTRON-EMISSION; HYDROGEN STORAGE; TEMPERATURE; BORON; GROWTH; FILMS; ATOMS;
D O I
10.1016/j.carbon.2008.09.047
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The nitrogen (N) doping effect and field emission properties of double-walled carbon nanotubes (DWCNTs) were investigated. Diameter transformation and defect generation in the N-doped DWCNTs mainly depend on the amount of nitrogen employed. By applying N-doping into DWCNTs (1.5 N at.%), the average diameters of the DWCNTs were increased from 1.7 to 2.4 nm, and the crystallinity (I-G/I-D) was decreased from 13.5 to 5. Field emission properties were enhanced by the N doping into DWCNTs. The turn-on field, corresponding to a current density of 0.1 mu A/cm(2), was about 0.9V/mu m for the N-doped DWCNTs (1.5 N at.%). The field enhancement factor of the N-doped DWCNTs was higher than that of the undoped DWCNTs. It was found that the field emission properties were controlled by pyridine-like N in the graphite due to N-doping. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:169 / 177
页数:9
相关论文
共 50 条
  • [41] Raman study on double-walled carbon nanotubes
    Wei, JQ
    Jiang, B
    Zhang, XF
    Zhu, HW
    Wu, DH
    CHEMICAL PHYSICS LETTERS, 2003, 376 (5-6) : 753 - 757
  • [42] Turning Peapods into Double-Walled Carbon Nanotubes
    S. Bandow
    K. Hirahara
    T. Hiraoka
    G. Chen
    P. C. Eklund
    S. Iijima
    MRS Bulletin, 2004, 29 : 260 - 264
  • [43] Stability of Double-Walled Carbon Nanotubes Revisited
    Semenyuk N.P.
    International Applied Mechanics, 2016, 52 (1) : 73 - 81
  • [44] Arc synthesis of double-walled carbon nanotubes in low pressure air and their superior field emission properties
    Zhao, Jiang
    Su, Yanjie
    Yang, Zhi
    Wei, Liangming
    Wang, Ying
    Zhang, Yafei
    CARBON, 2013, 58 : 92 - 98
  • [45] Turning peapods into double-walled carbon nanotubes
    Bandow, S
    Hirahara, K
    Hiraoka, T
    Chen, G
    Eklund, P
    Iijima, S
    MRS BULLETIN, 2004, 29 (04) : 260 - 264
  • [46] Band structures of double-walled carbon nanotubes
    Ho, Y. H.
    Ho, G. W.
    Wu, S. J.
    Lin, M. F.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2006, 24 (03): : 1098 - 1103
  • [47] Buckypaper from double-walled carbon nanotubes
    Halford, B
    CHEMICAL & ENGINEERING NEWS, 2005, 83 (06) : 9 - 9
  • [48] Torsional buckling of double-walled carbon nanotubes
    Wang, Q.
    CARBON, 2008, 46 (08) : 1172 - 1174
  • [49] Thermal buckling of double-walled carbon nanotubes
    Hsu, Jung-Chang
    Lee, Haw-Long
    Chang, Win-Jin
    JOURNAL OF APPLIED PHYSICS, 2009, 105 (10)
  • [50] Force distribution for double-walled carbon nanotubes
    Baowan, Duangkamon
    Hill, James A.
    2006 INTERNATIONAL CONFERENCE ON NANOSCIENCE AND NANOTECHNOLOGY, VOLS 1 AND 2, 2006, : 46 - +