Parallel trapping of multiple nanoparticles using a quasi-bound state in the continuum mode

被引:8
|
作者
Wang, Jinzhi [1 ]
Han, Zhe [1 ]
Wang, Chao [1 ]
Tian, Huiping [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Informat & Commun Engn, State Key Lab Informat Photon & Opt Commun, Beijing Key Lab Space Ground Interconnect & Conve, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
MANIPULATION;
D O I
10.1364/JOSAB.465984
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this work, we put forward an all-dielectric nanotweezer using a quasi-bound state in the continuum (quasi-BIC) mode to trap nanoparticles with a radius of 10 nm. The quasi-BIC mode provides not only a very high electric field enhancement but also a high quality factor ( Q-factor), which gives it potential for the trapping of nanoparticles with low laser power and high stability. The simulation results show that when the input intensity is 1mW/mu m(2), the maximum optical trapping force of the 10 nm particles is 2.24 pN, and the maximum trapping potential is 29.08 k(B)T. Furthermore, the proposed nanotweezer array provides multiple optical hotspots with high field confinement and enhancement, resulting in multiple trapping sites for the parallel trapping of multiple nanoparticles. The high-throughput trapping of nanoparticles provides a good foundation for studying biological cells and protein molecules, especially for the heterogeneity of cells and the large-scale parallel analyses of basic drugs. (c) 2022 Optica Publishing Group
引用
收藏
页码:2356 / 2361
页数:6
相关论文
共 50 条
  • [21] Identifying phenotypes of colorectal malignant tumors using the quasi-bound state in the continuum of a terahertz metasurface biosensor
    Xu, Hongji
    Wang, Hongye
    Yang, Xiang
    Gronlien, Iver
    Torvund, Arthur georg serville
    Xomalis, Angelos
    Zhao, Zhenyu
    BIOMEDICAL OPTICS EXPRESS, 2025, 16 (04): : 1471 - 1482
  • [22] Permittivity-Asymmetric Quasi-Bound States in the Continuum
    Berte, Rodrigo
    Weber, Thomas
    Menezes, Leonardo de Souza
    Kuehner, Lucca
    Aigner, Andreas
    Barkey, Martin
    Wendisch, Fedja Jan
    Kivshar, Yuri
    Tittl, Andreas
    Maier, Stefan A.
    NANO LETTERS, 2023, 23 (07) : 2651 - 2658
  • [23] Edge Detection Imaging by Quasi-Bound States in the Continuum
    Liu, Tingting
    Qiu, Jumin
    Xu, Lei
    Qin, Meibao
    Wan, Lipeng
    Yu, Tianbao
    Liu, Qiegen
    Huang, Lujun
    Xiao, Shuyuan
    NANO LETTERS, 2024, 24 (45) : 14466 - 14474
  • [24] Does Σ-Σ-α form a quasi-bound state?
    Oo, HH
    Myint, KS
    Kamada, H
    Glöckle, W
    PROGRESS OF THEORETICAL PHYSICS, 2005, 113 (04): : 809 - 820
  • [25] Bound and quasi-bound rotation-vibrational states using massively parallel computers
    Mussa, HY
    Tennyson, J
    COMPUTER PHYSICS COMMUNICATIONS, 2000, 128 (1-2) : 434 - 445
  • [26] Nonreciprocal toroidal dipole resonance and one-way quasi-bound state in the continuum
    Li, Junqing
    Wu, Zhixu
    Zhang, Dandan
    Sun, Yong
    Liu, Wenxing
    Yu, Tianbao
    OPTICS LETTERS, 2024, 49 (05) : 1313 - 1316
  • [27] Lower Bound for ppK– Quasi-Bound State Energy
    I. Filikhin
    B. Vlahovic
    Physics of Particles and Nuclei, 2020, 51 : 979 - 987
  • [28] Skyrmion Quasi-Bound States in the Continuum for 3D Light Trapping in Arbitrarily Large Volumes
    Qin, Haoye
    Zhang, Zhe
    Chen, Qiaolu
    Zhang, Zhechen
    Fleury, Romain
    ADVANCED OPTICAL MATERIALS, 2024, 12 (34):
  • [29] Active modulation of quasi-bound state in the continuum based on bulk Dirac semimetals metamaterial
    Huang, Zhiyong
    Liu, Guidong
    Wang, Lingling
    APPLIED PHYSICS EXPRESS, 2022, 15 (03)
  • [30] Refractive index sensing using quasi-bound states in the continuum in silicon metasurfaces
    Van Loon, Tom
    Liang, Minpeng
    Delplace, Thomas
    Maes, Bjorn
    Murai, Shunsuke
    Zijlstra, Peter
    Rivas, Jaime Gomez
    OPTICS EXPRESS, 2024, 32 (08): : 14289 - 14299