A census of zeta functions of quartic K3 surfaces over F2

被引:1
|
作者
Kedlaya, Kiran S. [1 ]
Sutherland, Andrew V. [2 ]
机构
[1] Univ Calif San Diego, Dept Math, 9500 Gilman Dr 0112, La Jolla, CA 92093 USA
[2] MIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
ABELIAN-VARIETIES; FINITE-FIELDS; NUMBER-FIELDS; DISCRIMINANT; POLYNOMIALS;
D O I
10.1112/S1461157016000140
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We compute the complete set of candidates for the zeta function of a K3 surface over F-2 consistent with the Weil and Tate conjectures, as well as the complete set of zeta functions of smooth quartic surfaces over F-2. These sets differ substantially, but we do identify natural subsets which coincide. This gives some numerical evidence towards a Honda-Tate theorem for transcendental zeta functions of K3 surfaces; such a result would refine a recent theorem of Taelman, in which one must allow an uncontrolled base field extension.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
  • [21] Joyce invariants for K3 surfaces and mock theta functions
    Mellit, Anton
    Okada, So
    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2009, 3 (04) : 655 - 676
  • [22] On K3 Surface Quotients of K3 or Abelian Surfaces
    Garbagnati, Alice
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2017, 69 (02): : 338 - 372
  • [23] Finiteness results for K3 surfaces over arbitrary fields
    Bright, Martin
    Logan, Adam
    van Luijk, Ronald
    EUROPEAN JOURNAL OF MATHEMATICS, 2020, 6 (02) : 336 - 366
  • [24] On the Picard number of K3 surfaces over number fields
    Charles, Francois
    ALGEBRA & NUMBER THEORY, 2014, 8 (01) : 1 - 17
  • [25] K3 surfaces of finite height over finite fields
    Yu, Jeng-Daw
    Yu, Noriko
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2008, 48 (03): : 499 - 519
  • [26] The Tate conjecture for K3 surfaces over finite fields
    Charles, Francois
    INVENTIONES MATHEMATICAE, 2013, 194 (01) : 119 - 145
  • [27] The Tate conjecture for K3 surfaces over finite fields
    François Charles
    Inventiones mathematicae, 2013, 194 : 119 - 145
  • [28] ON THE DEGENERATION OF K3 SURFACES OVER FIELDS OF FINITE CHARACTERISTIC
    RUDAKOV, AN
    SAFAREVIC, IR
    MATHEMATICS OF THE USSR-IZVESTIYA, 1981, 45 (03): : 561 - 574
  • [29] Finiteness results for K3 surfaces over arbitrary fields
    Martin Bright
    Adam Logan
    Ronald van Luijk
    European Journal of Mathematics, 2020, 6 : 336 - 366
  • [30] Moduli spaces of bundles over nonprojective K3 surfaces
    Perego, Arvid
    Toma, Matei
    KYOTO JOURNAL OF MATHEMATICS, 2017, 57 (01) : 107 - 146