A census of zeta functions of quartic K3 surfaces over F2
被引:1
|
作者:
Kedlaya, Kiran S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Dept Math, 9500 Gilman Dr 0112, La Jolla, CA 92093 USAUniv Calif San Diego, Dept Math, 9500 Gilman Dr 0112, La Jolla, CA 92093 USA
Kedlaya, Kiran S.
[1
]
Sutherland, Andrew V.
论文数: 0引用数: 0
h-index: 0
机构:
MIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USAUniv Calif San Diego, Dept Math, 9500 Gilman Dr 0112, La Jolla, CA 92093 USA
Sutherland, Andrew V.
[2
]
机构:
[1] Univ Calif San Diego, Dept Math, 9500 Gilman Dr 0112, La Jolla, CA 92093 USA
[2] MIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA
We compute the complete set of candidates for the zeta function of a K3 surface over F-2 consistent with the Weil and Tate conjectures, as well as the complete set of zeta functions of smooth quartic surfaces over F-2. These sets differ substantially, but we do identify natural subsets which coincide. This gives some numerical evidence towards a Honda-Tate theorem for transcendental zeta functions of K3 surfaces; such a result would refine a recent theorem of Taelman, in which one must allow an uncontrolled base field extension.