A census of zeta functions of quartic K3 surfaces over F2

被引:1
|
作者
Kedlaya, Kiran S. [1 ]
Sutherland, Andrew V. [2 ]
机构
[1] Univ Calif San Diego, Dept Math, 9500 Gilman Dr 0112, La Jolla, CA 92093 USA
[2] MIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
ABELIAN-VARIETIES; FINITE-FIELDS; NUMBER-FIELDS; DISCRIMINANT; POLYNOMIALS;
D O I
10.1112/S1461157016000140
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We compute the complete set of candidates for the zeta function of a K3 surface over F-2 consistent with the Weil and Tate conjectures, as well as the complete set of zeta functions of smooth quartic surfaces over F-2. These sets differ substantially, but we do identify natural subsets which coincide. This gives some numerical evidence towards a Honda-Tate theorem for transcendental zeta functions of K3 surfaces; such a result would refine a recent theorem of Taelman, in which one must allow an uncontrolled base field extension.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
  • [1] Zeta functions of an infinite family of K3 surfaces
    Ahlgren, S
    Ono, K
    Penniston, D
    AMERICAN JOURNAL OF MATHEMATICS, 2002, 124 (02) : 353 - 368
  • [2] Lines on K3 Quartic Surfaces in Characteristic 2
    Veniani, Davide Cesare
    QUARTERLY JOURNAL OF MATHEMATICS, 2017, 68 (02): : 551 - 581
  • [3] K3 polytopes and their quartic surfaces
    Balletti, Gabriele
    Panizzut, Marta
    Sturmfels, Bernd
    ADVANCES IN GEOMETRY, 2021, 21 (01) : 85 - 98
  • [4] A FAMILY OF K3 SURFACES AND ZETA(3)
    BEUKERS, F
    PETERS, CAM
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1984, 351 : 42 - 54
  • [5] Lines on K3 quartic surfaces in characteristic 3
    Davide Cesare Veniani
    manuscripta mathematica, 2022, 167 : 675 - 701
  • [6] Lines on K3 quartic surfaces in characteristic 3
    Veniani, Davide Cesare
    MANUSCRIPTA MATHEMATICA, 2022, 167 (3-4) : 675 - 701
  • [7] Quartic K3 surfaces without nontrivial automorphisms
    van Luijk, Ronald
    MATHEMATICAL RESEARCH LETTERS, 2006, 13 (2-3) : 423 - 439
  • [8] Isogenies Between K3 Surfaces Over (F)over-barp
    Yang, Ziquan
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (06) : 4407 - 4450
  • [9] Birational geometry of the moduli space of quartic K3 surfaces
    Laza, Radu
    O'Grady, Kieran
    COMPOSITIO MATHEMATICA, 2019, 155 (09) : 1655 - 1710
  • [10] A CENSUS OF CUBIC FOURFOLDS OVER F2
    Auel, Asher
    Kulkarni, Avinash
    Petok, Jack
    Weinbaum, Jonah
    MATHEMATICS OF COMPUTATION, 2024,