A note on vertex-disjoint cycles

被引:9
|
作者
Verstraëte, J [1 ]
机构
[1] Ctr Math Sci, Dept Pure Math & Math Stat, Cambridge CB3 0WB, England
来源
COMBINATORICS PROBABILITY & COMPUTING | 2002年 / 11卷 / 01期
关键词
D O I
10.1017/S0963548301004904
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Haggkvist and Scott asked whether one can find a quadratic function q(k) such that, if G is a graph of minimum degree at least q(k), then G contains vertex-disjoint cycles of k consecutive even lengths. In this paper, it is shown that if G is a graph of average degree at least k(2) + 19k + 10 with sufficiently many vertices, then G contains vertex-disjoint cycles of k consecutive even lengths, answering the above question in the affirmative. The coefficient of k(2) cannot be decreased and, in this sense, this result is best possible.
引用
收藏
页码:97 / 102
页数:6
相关论文
共 50 条
  • [41] Graphs without two vertex-disjoint S-cycles
    Kang, Minjeong
    Kwon, O-joung
    Lee, Myounghwan
    DISCRETE MATHEMATICS, 2020, 343 (10)
  • [42] Vertex-disjoint cycles containing specified vertices in a bipartite graph
    Chen, GT
    Enomoto, H
    Kawarabayashi, K
    Ota, K
    Lou, DJ
    Saito, A
    JOURNAL OF GRAPH THEORY, 2004, 46 (03) : 145 - 166
  • [43] Degree Sum Condition for Vertex-Disjoint 5-Cycles
    Wang, Maoqun
    Qian, Jianguo
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024, 44 (02) : 555 - 574
  • [44] Vertex-Disjoint Cycles Containing Specified Vertices in a Bipartite Graph
    Shaohua Zhang
    Jin Yan
    Suyun Jiang
    Graphs and Combinatorics, 2016, 32 : 2171 - 2181
  • [45] Vertex-Disjoint Cycles of Order Eight with Chords in a Bipartite Graph
    Zou, Qingsong
    Chen, Hongyu
    Li, Guojun
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2013, 36 (01) : 255 - 262
  • [46] PROOF OF A CONJECTURE OF HENNING AND YEO ON VERTEX-DISJOINT DIRECTED CYCLES
    Lichiardopol, Nicolas
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2014, 28 (03) : 1618 - 1627
  • [47] Vertex-disjoint cycles of length at most four each of which contains a specified vertex
    Ishigami, Y
    JOURNAL OF GRAPH THEORY, 2001, 37 (01) : 37 - 47
  • [48] Vertex-Disjoint Quadrilaterals in Multigraphs
    Yunshu Gao
    Qingsong Zou
    Liyan Ma
    Graphs and Combinatorics, 2017, 33 : 901 - 912
  • [49] Vertex-Disjoint Quadrilaterals in Multigraphs
    Gao, Yunshu
    Zou, Qingsong
    Ma, Liyan
    GRAPHS AND COMBINATORICS, 2017, 33 (04) : 901 - 912
  • [50] Vertex-disjoint paths in graphs
    Egawa, Y
    Ota, K
    ARS COMBINATORIA, 2001, 61 : 23 - 31