Global solutions to space-time monopole equations in one space dimension

被引:5
|
作者
Huh, Hyungjin [1 ]
Yim, Jihyun [1 ]
机构
[1] Chung Ang Univ, Dept Math, Seoul 156756, South Korea
基金
新加坡国家研究基金会;
关键词
Space-time monopole equations; L-p estimates; Global existence;
D O I
10.1016/j.jmaa.2015.06.043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove global existence of solutions to space-time monopole equations in one space dimension. Observing the null structure of the system, we first prove local existence in L-p by applying a bilinear estimate. From a priori L-p estimates, we can extend the local solution to the global one. For the critical case L-1, the concentration of the solution is denied to show the time global solvability. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:74 / 85
页数:12
相关论文
共 50 条
  • [21] Superradiance of a global monopole in Reissner-Nordstrom(-AdS) space-time
    Secuk, M. Haluk
    Delice, Ozgur
    EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (05):
  • [22] Superradiance of a global monopole in Reissner–Nordström(–AdS) space-time
    M. Haluk Seçuk
    Özgür Delice
    The European Physical Journal C, 2020, 80
  • [23] PRECESSION OF A GYROSCOPE IN THE SPACE-TIME OF A BLACK-HOLE WITH A GLOBAL MONOPOLE
    JING, JL
    YU, HW
    WANG, YJ
    CHINESE SCIENCE BULLETIN, 1993, 38 (11): : 920 - 924
  • [24] On Fourier parametrization of global attractors for equations in one space dimension
    Kukavica, I
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2005, 13 (03) : 553 - 560
  • [25] Space-time coupled evolution equations and their stochastic solutions
    Herman, John
    Johnston, Ifan
    Toniazzi, Lorenzo
    ELECTRONIC JOURNAL OF PROBABILITY, 2020, 25 : 1 - 21
  • [26] SPACE-TIME DECAY FOR SOLUTIONS OF WAVE-EQUATIONS
    SEGAL, I
    ADVANCES IN MATHEMATICS, 1976, 22 (03) : 305 - 311
  • [27] Characteristic solutions of scalar Newton equations in one space dimension
    Doyle, PW
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1998, 33 (06) : 1013 - 1026
  • [28] Solutions of Weakened Field Equations in Godel Space-Time
    Mishra, Aditya Mani
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2019, 37 (02): : 59 - 65
  • [29] APPROXIMATE SOLUTIONS FOR DIFFUSION EQUATIONS ON CANTOR SPACE-TIME
    Yang, Xiao-Jun
    Baleanu, Dumitru
    Zhong, Wei-Ping
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2013, 14 (02): : 127 - 133
  • [30] SOLUTIONS TO INTEGRABLE SPACE-TIME SHIFTED NONLOCAL EQUATIONS
    Liu, Shi-Min
    Wang, Jing
    Zhang, Da-Jun
    REPORTS ON MATHEMATICAL PHYSICS, 2022, 89 (02) : 199 - 220