Non-Enzymatic Amperometric Sensing of Hydrogen Peroxide Based on Vanadium Pentoxide Nanostructures

被引:95
|
作者
Ghanei-Motlagh, Masoud [1 ,2 ]
Taher, Mohammad Ali [1 ]
Fayazi, Maryam [3 ]
Baghayeri, Mehdi [4 ]
Hosseinifar, AbduRahman [5 ]
机构
[1] Shahid Bahonar Univ Kerman, Fac Sci, Dept Chem, Kerman, Iran
[2] Shahid Bahonar Univ Kerman, Young Researchers Soc, Kerman, Iran
[3] Grad Univ Adv Technol, Inst Sci & High Technol & Environm Sci, Dept Environm, Kerman, Iran
[4] Hakim Sabzevari Univ, Dept Chem, Sabzevar, Iran
[5] Univ Tehran, Coll Engn, Sch Chem Engn, TPNT, Tehran 111554563, Iran
关键词
ELECTROCHEMICAL DETECTION; CATHODE MATERIAL; OXIDE NANOPARTICLES; V2O5; SENSOR; PERFORMANCE; NANOCOMPOSITE; ELECTRODE; CARBON; H2O2;
D O I
10.1149/2.0521906jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Herein, a simple and selective electrochemical sensor was proposed for non-enzymatic determination of hydrogen peroxide (H2O2). This sensor was fabricated by incorporation of the novel nanostructured orthorhombic vanadium pentoxide (V2O5) into the carbon paste electrode (CPE) which provides significant catalytic activities for H2O2 reduction. The electrochemical impedance spectroscopy (EIS) studies illustrated lower charge transfer resistance (R-ct) of the V2O5 modified CPE compared to the unmodified CPE. The effects of various experimental factors such as solution pH, applied potential and amount of modifier were studied in an amperometric mode. After optimization, the proposed method displayed a wide linear detection range from 5.0 to 1400.0 mu M with a low detection limit of 2.5 mu M based S/N = 3 and a response time less than 5 s. The sensitivity of 3.44 mu A mu M-1 cm(-2) was acquired in the present method for H2O2 quantification is considerably better than other reported amperometric sensors with similar detection limits. In addition, the designed sensor depicted good reproducibility, remarkable selectivity, and excellent stability. The modified CPE was applicable for analysis of H2O2 in some cosmetic and personal care products. (C) 2019 The Electrochemical Society.
引用
收藏
页码:B367 / B372
页数:6
相关论文
共 50 条
  • [21] Petal-like CuO nanostructures prepared by a simple wet chemical method, and their application to non-enzymatic amperometric determination of hydrogen peroxide
    Gao, Peng
    Liu, Dawei
    MICROCHIMICA ACTA, 2015, 182 (7-8) : 1231 - 1239
  • [22] Petal-like CuO nanostructures prepared by a simple wet chemical method, and their application to non-enzymatic amperometric determination of hydrogen peroxide
    Peng Gao
    Dawei Liu
    Microchimica Acta, 2015, 182 : 1231 - 1239
  • [23] A Non-Enzymatic Hydrogen Peroxide Sensor Based on Ag/MnOOH Nanocomposites
    Bai, Wushuang
    Zheng, Jianbin
    Sheng, Qinglin
    ELECTROANALYSIS, 2013, 25 (10) : 2305 - 2311
  • [24] Synthesis of copper nanorods for non-enzymatic amperometric sensing of glucose
    Xiangjian Liu
    Wenxiu Yang
    Lulu Chen
    Jianbo Jia
    Microchimica Acta, 2016, 183 : 2369 - 2375
  • [25] Synthesis of copper nanorods for non-enzymatic amperometric sensing of glucose
    Liu, Xiangjian
    Yang, Wenxiu
    Chen, Lulu
    Jia, Jianbo
    MICROCHIMICA ACTA, 2016, 183 (08) : 2369 - 2375
  • [26] Synthesis of a CuNP/chitosan/black phosphorus nanocomposite for non-enzymatic hydrogen peroxide sensing
    Zhao, Yun
    Zhuge, Zhen
    Tang, Yi-Hong
    Tao, Jian-Wei
    ANALYST, 2020, 145 (22) : 7260 - 7266
  • [27] Highly branched gold–copper nanostructures for non-enzymatic specific detection of glucose and hydrogen peroxide
    Aroonsri Ngamaroonchote
    Yanisa Sanguansap
    Tuksadon Wutikhun
    Kullavadee Karn-orachai
    Microchimica Acta, 2020, 187
  • [28] Silver nanoparticle impregnated mesoporous silica as a non-enzymatic amperometric sensor for an aqueous solution of hydrogen peroxide
    Khan, Anees Y.
    Bandyopadhyaya, Rajdip
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2014, 727 : 184 - 190
  • [29] Copper Oxide Chitosan Nanocomposite: Characterization and Application in Non-Enzymatic Hydrogen Peroxide Sensing
    Arena, Antonella
    Scandurra, Graziella
    Ciofi, Carmine
    SENSORS, 2017, 17 (10)
  • [30] Nanoporous gold as non-enzymatic sensor for hydrogen peroxide
    Meng, Fanhui
    Yan, Xiuling
    Liu, Jianguo
    Gu, Jun
    Zou, Zhigang
    ELECTROCHIMICA ACTA, 2011, 56 (12) : 4657 - 4662