Critical Pairs for the Product Singleton Bound

被引:19
|
作者
Mirandola, Diego [1 ,2 ]
Zemor, Gilles [2 ]
机构
[1] Leiden Univ, Amsterdam & Math Inst, Ctr Math & Comp Sci, NL-2311 EZ Leiden, Netherlands
[2] Univ Bordeaux, Inst Math Bordeaux, F-33400 Talence, France
关键词
Error-correcting codes; Schur-product codes; Product Singleton Bound; LINEAR CODES;
D O I
10.1109/TIT.2015.2450207
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We characterize product-maximum distance separable (PMDS) pairs of linear codes, i.e., pairs of codes C and D whose product under coordinatewise multiplication has maximum possible minimum distance as a function of the code length and the dimensions dim C and dim D. We prove in particular, for C = D, that if the square of the code C has minimum distance at least 2, and (C, C) is a PMDS pair, then either C is a generalized Reed-Solomon code, or C is a direct sum of self-dual codes. In passing we establish coding-theory analogues of classical theorems of additive combinatorics.
引用
收藏
页码:4928 / 4937
页数:10
相关论文
共 50 条
  • [31] Maternal Smoking During Pregnancy and the Risk of Psychiatric Morbidity in Singleton Sibling Pairs
    Ekblad, Mikael
    Lehtonen, Liisa
    Korkeila, Jyrki
    Gissler, Mika
    NICOTINE & TOBACCO RESEARCH, 2017, 19 (05) : 597 - 604
  • [32] Improved Singleton Bound on Insertion-Deletion Codes and Optimal Constructions
    Chen, Bocong
    Zhang, Guanghui
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (05) : 3028 - 3033
  • [33] Entanglement-assisted quantum communication beating the quantum Singleton bound
    Grassl, Markus
    PHYSICAL REVIEW A, 2021, 103 (02)
  • [34] An Improved Bound and Singleton-Optimal Constructions of Fractional Repetition Codes
    Zhu, Bing
    Shum, Kenneth W.
    Wang, Weiping
    Wang, Jianxin
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (02) : 749 - 758
  • [35] Optimal b-symbol constacyclic codes with respect to the Singleton bound
    Dinh, Hai Q.
    Wang, Xiaoqiang
    Sirisrisakulchai, Jirakom
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (08)
  • [36] CRITICAL SURFACE PAIRS AND TRIPLETS
    NEGAHDARIPOUR, S
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 1989, 3 (04) : 293 - 312
  • [37] The Graph of Critical Pairs of a Crown
    Barrera-Cruz, Fidel
    Garcia, Rebecca
    Harris, Pamela
    Kubik, Bethany
    Smith, Heather
    Talbott, Shannon
    Taylor, Libby
    Trotter, William T.
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2019, 36 (03): : 621 - 652
  • [38] Development closed critical pairs
    vanOostrom, V
    HIGHER-ORDER ALGEBRA, LOGIC, AND TERM REWRITING, 1996, 1074 : 185 - 200
  • [39] Minimal sets of critical pairs
    Caboara, M
    Kreuzer, M
    Robbiano, L
    MATHEMATICAL SOFTWARE, PROCEEDINGS, 2002, : 390 - 404
  • [40] The Graph of Critical Pairs of a Crown
    Fidel Barrera-Cruz
    Rebecca Garcia
    Pamela Harris
    Bethany Kubik
    Heather Smith
    Shannon Talbott
    Libby Taylor
    William T. Trotter
    Order, 2019, 36 : 621 - 652