FRACTURE TOUGHNESS BEHAVIOUR OF 316L STAINLESS STEEL SAMPLES MANUFACTURED THROUGH SELECTIVE LASER MELTING

被引:0
|
作者
Davies, Catrin M. [1 ]
Zhou, Ruijan [1 ]
Withnell, Olivia [1 ]
Williams, Richard [1 ]
Ronneberg, Tobias [1 ]
Hooper, Paul A. [1 ]
机构
[1] Imperial Coll London, Dept Mech Engn, South Kensington Campus, London SW7 2AZ, England
关键词
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Selective laser melting (SLM) is a relatively new manufacturing technique which offers many benefits. However the utilisation of SLM manufactured components depends on the assurance of their integrity during operation. Fracture toughness testing (JO has been performed on as-built compact tension fracture mechanics samples manufactured in three orthogonal directions. When the crack growth plane was transverse to the interface of the build layers, the fracture toughness values were found to be similar to those manufactured using conventional techniques. However, the fracture toughness is significantly reduced when the crack plane is parallel to the interface of the build layers. Simple heat treatments have been performed on Charpy fracture samples and the resulting impact energy values indicate that the fracture toughness of a component may be improved by heat treatment.
引用
收藏
页数:9
相关论文
共 50 条
  • [11] The Fracture and Fragmentation Behaviour of Additively Manufactured Stainless Steel 316L
    Amott, R.
    Harris, E. J.
    Winter, R. E.
    Stirk, S. M.
    Chapman, D. J.
    Eakins, D. E.
    SHOCK COMPRESSION OF CONDENSED MATTER - 2015, 2017, 1793
  • [12] Mechanisms controlling fracture toughness of additively manufactured stainless steel 316L
    Deepak Kumar
    Suyog Jhavar
    Abhinav Arya
    K. G. Prashanth
    Satyam Suwas
    International Journal of Fracture, 2022, 235 : 61 - 78
  • [13] Mechanisms controlling fracture toughness of additively manufactured stainless steel 316L
    Kumar, Deepak
    Jhavar, Suyog
    Arya, Abhinav
    Prashanth, K. G.
    Suwas, Satyam
    INTERNATIONAL JOURNAL OF FRACTURE, 2022, 235 (01) : 61 - 78
  • [14] Recovery of dislocation cell structures in 316L stainless steel manufactured by selective laser melting
    Fan, Jinming
    Zhu, Yueyue
    Wang, Weiyi
    Chen, Ke
    Godfrey, Andrew
    Yu, Tianbo
    Huang, Xiaoxu
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 30 : 9472 - 9480
  • [15] On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting
    Riemer, A.
    Leuders, S.
    Thoene, M.
    Richard, H. A.
    Troester, T.
    Niendorf, T.
    ENGINEERING FRACTURE MECHANICS, 2014, 120 : 15 - 25
  • [16] REVIEW OF THE FATIGUE PERFORMANCE OF STAINLESS STEEL 316L PARTS MANUFACTURED BY SELECTIVE LASER MELTING
    Zhang, Meng
    Li, Hua
    Zhang, Xiang
    Hardacre, David
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON PROGRESS IN ADDITIVE MANUFACTURING (PRO-AM 2016), 2016, : 563 - 568
  • [17] Subgrain microstructures and tensile properties of 316L stainless steel manufactured by selective laser melting
    Xin Yang
    Wen-jun Ma
    Yao-jia Ren
    Shi-feng Liu
    Yan Wang
    Wan-lin Wang
    Hui-ping Tang
    Journal of Iron and Steel Research International, 2021, 28 : 1159 - 1167
  • [18] Subgrain microstructures and tensile properties of 316L stainless steel manufactured by selective laser melting
    Yang, Xin
    Ma, Wen-jun
    Ren, Yao-jia
    Liu, Shi-feng
    Wang, Yan
    Wang, Wan-lin
    Tang, Hui-ping
    JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL, 2021, 28 (09) : 1159 - 1167
  • [19] Microstructure and Fatigue Damage of 316L Stainless Steel Manufactured by Selective Laser Melting (SLM)
    Wang, Zhentao
    Yang, Shanglei
    Huang, Yubao
    Fan, Cong
    Peng, Zeng
    Gao, Zihao
    MATERIALS, 2021, 14 (24)
  • [20] Microstructure and anisotropic tensile performance of 316L stainless steel manufactured by selective laser melting
    Wang, Lin
    FRATTURA ED INTEGRITA STRUTTURALE-FRACTURE AND STRUCTURAL INTEGRITY, 2022, 16 (60): : 380 - 391