Learning Interpretable Representations with Informative Entanglements

被引:0
|
作者
Beyazit, Ege [1 ]
Tuncel, Doruk [2 ]
Yuan, Xu [1 ]
Tzeng, Nian-Feng [1 ]
Wu, Xindong [3 ]
机构
[1] Univ Louisiana Lafayette, Lafayette, LA 70504 USA
[2] Johannes Kepler Univ Linz, Linz, Austria
[3] Mininglamp Acad Sci, Beijing, Peoples R China
来源
PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE | 2020年
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Learning interpretable representations in an unsupervised setting is an important yet a challenging task. Existing unsupervised interpretable methods focus on extracting independent salient features from data. However they miss out the fact that the entanglement of salient features may also be informative. Acknowledging these entanglements can improve the interpretability, resulting in extraction of higher quality and a wider variety of salient features. In this paper, we propose a new method to enable Generative Adversarial Networks (GANs) to discover salient features that may be entangled in an informative manner, instead of extracting only disentangled features. Specifically, we propose a regularizer to punish the disagreement between the extracted feature interactions and a given dependency structure while training. We model these interactions using a Bayesian network, estimate the maximum likelihood parameters and calculate a negative likelihood score to measure the disagreement. Upon qualitatively and quantitatively evaluating the proposed method using both synthetic and real-world datasets, we show that our proposed regularizer guides GANs to learn representations with disentanglement scores competing with the state-of-the-art, while extracting a wider variety of salient features.
引用
收藏
页码:1970 / 1976
页数:7
相关论文
共 50 条
  • [21] A Tutorial on Derivative-Free Policy Learning Methods for Interpretable Controller Representations
    Paulson, Joel A.
    Sorourifar, Farshud
    Mesbah, Ali
    2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, : 1295 - 1306
  • [22] From Study Tactics to Learning Strategies: An Analytical Method for Extracting Interpretable Representations
    Fincham, Ed
    Gasevic, Dragan
    Jovanovic, Jelena
    Pardo, Abelardo
    IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, 2019, 12 (01): : 59 - 72
  • [23] MARBLE: interpretable representations of neural population dynamics using geometric deep learning
    Gosztolai, Adam
    Peach, Robert L.
    Arnaudon, Alexis
    Barahona, Mauricio
    Vandergheynst, Pierre
    NATURE METHODS, 2025, 22 (03) : 612 - 620
  • [24] Learning biologically-interpretable latent representations for gene expression dataPathway Activity Score Learning Algorithm
    Ioulia Karagiannaki
    Krystallia Gourlia
    Vincenzo Lagani
    Yannis Pantazis
    Ioannis Tsamardinos
    Machine Learning, 2023, 112 : 4257 - 4287
  • [25] Analysis of Interpretable Data Representations for 4D-STEM Using Unsupervised Learning
    Bruefach, Alexandra
    Ophus, Colin
    Scott, Mary C.
    MICROSCOPY AND MICROANALYSIS, 2022, 28 (06) : 1998 - 2008
  • [26] Learning interpretable representations of entanglement in quantum optics experiments using deep generative models
    Flam-Shepherd, Daniel
    Wu, Tony C.
    Gu, Xuemei
    Cervera-Lierta, Alba
    Krenn, Mario
    Aspuru-Guzik, Alan
    NATURE MACHINE INTELLIGENCE, 2022, 4 (06) : 544 - 554
  • [27] Reconstructable and Interpretable Representations for Time Series with Time-Skip Sparse Dictionary Learning
    Yoshimura, Genta
    Kanemura, Atsunori
    Asoh, Hideki
    PROCEEDINGS OF THE THEMATIC WORKSHOPS OF ACM MULTIMEDIA 2017 (THEMATIC WORKSHOPS'17), 2017, : 323 - 331
  • [28] Time2Feat: Learning Interpretable Representations for Multivariate Time Series Clustering
    Bonifati, Angela
    Del Buono, Francesco
    Guerra, Francesco
    Tiano, Donato
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2022, 16 (02): : 193 - 201
  • [29] Learning interpretable representations of entanglement in quantum optics experiments using deep generative models
    Daniel Flam-Shepherd
    Tony C. Wu
    Xuemei Gu
    Alba Cervera-Lierta
    Mario Krenn
    Alán Aspuru-Guzik
    Nature Machine Intelligence, 2022, 4 : 544 - 554
  • [30] An evolutionary algorithm for interpretable molecular representations
    Pflueger, Philipp M.
    Kuehnemund, Marius
    Katzenburg, Felix
    Kuchen, Herbert
    Glorius, Frank
    CHEM, 2024, 10 (05): : 1391 - 1405