On the Asymptotic Distribution of a Weighted Least Absolute Deviation Estimate for a Bifurcating Autoregressive Process

被引:0
|
作者
Terpstra, Jeff T. [1 ]
机构
[1] Western Michigan Univ, Dept Stat, Kalamazoo, MI 49008 USA
关键词
Asymptotic normality; Bifurcating autoregressive model; L1-estimates; Median; Schweppe weights;
D O I
10.1007/978-3-319-39065-9_5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper introduces a new class of estimates for estimating the parameter vector of a first-order bifurcating autoregressive model. The estimates minimize a sum of weighted absolute deviations where the weights are of the Schweppe variety. Asymptotic linearity properties are derived for the so called WL1-estimate. Based on these properties, the WL1-estimate is shown to be asymptotically normal at rate n(1/2). The results hinge on two new law of large numbers theorems for bifurcating processes. As an application of the theory, some asymptotic relative efficiency comparisons are made.
引用
收藏
页码:81 / 100
页数:20
相关论文
共 37 条