Security for Wiretap Networks via Rank-Metric Codes

被引:32
|
作者
Silva, Danilo [1 ]
Kschischang, Frank R. [1 ]
机构
[1] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON M5S 3G4, Canada
关键词
D O I
10.1109/ISIT.2008.4594971
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The problem of securing a network coding communication system against a wiretapper adversary is considered. The network implements linear network coding to deliver n packets from source to each receiver, and the wiretapper can eavesdrop on mu arbitrarily chosen links. A coding scheme is proposed that can achieve the maximum possible rate of k = n - mu packets that are information-theoretically secure from the adversary. A distinctive feature of our scheme is that it is universal: it can be applied on top of any communication network without requiring knowledge of or any modifications on the underlying network code. In fact, even a randomized network code can be used. Our approach is based on Rouayheb-Soljanin's formulation of a wiretap network as a generalization of the Ozarow-Wyner wiretap channel of type II Essentially, the linear MDS code in Ozarow-Wyner's coset coding scheme is replaced by a maximum-rank-distance code over an extension of the field in which linear network coding operations are performed.
引用
收藏
页码:176 / 180
页数:5
相关论文
共 50 条
  • [31] Compressed error and erasure correcting codes via rank-metric codes in random network coding
    Chen, Siguang
    Wu, Meng
    Lu, Weifeng
    INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, 2012, 25 (11) : 1398 - 1414
  • [32] Optimal Locally Repairable Codes with Local Minimum Storage Regeneration via Rank-Metric Codes
    Rawat, Ankit S.
    Silberstein, Natalia
    Koyluoglu, O. Ozan
    Vishwanath, Sriram
    2013 INFORMATION THEORY AND APPLICATIONS WORKSHOP (ITA), 2013,
  • [33] On Decoding Rank-Metric Codes Over Large Fields
    Roth, Ron M.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (02) : 944 - 951
  • [34] Error-Correcting Codes in Projective Spaces Via Rank-Metric Codes and Ferrers Diagrams
    Etzion, Tuvi
    Silberstein, Natalia
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (07) : 2909 - 2919
  • [35] On Decoding Rank-Metric Codes over Large Fields
    Roth, Ron M.
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 2756 - 2760
  • [36] Optimal Ferrers diagram rank-metric codes from MRD codes
    Shuangqing Liu
    Designs, Codes and Cryptography, 2023, 91 : 3977 - 3993
  • [37] Constructions for Optimal Ferrers Diagram Rank-Metric Codes
    Liu, Shuangqing
    Chang, Yanxun
    Feng, Tao
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (07) : 4115 - 4130
  • [38] q-polymatroids and their relation to rank-metric codes
    Gluesing-Luerssen, Heide
    Jany, Benjamin
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2022, 56 (03) : 725 - 753
  • [39] RANK-METRIC CODES, SEMIFIELDS, AND THE AVERAGE CRITICAL PROBLEM
    Gruica, A. N. I. N. A.
    Ravagnani, A. L. B. E. R. T. O.
    Sheekey, J. O. H. N.
    Zullo, F. E. R. D. I. N. A. N. D. O.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2023, 37 (02) : 1079 - 1117
  • [40] Higher-Degree Symmetric Rank-Metric Codes
    Bik, Arthur
    Neri, Alessandro
    SIAM Journal on Applied Algebra and Geometry, 2024, 8 (04) : 931 - 967