De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae

被引:264
|
作者
Koopman, Frank [1 ,2 ,3 ]
Beekwilder, Jules [2 ,4 ,5 ]
Crimi, Barbara [1 ,2 ,3 ]
van Houwelingen, Adele [4 ]
Hall, Robert D. [2 ,4 ,5 ]
Bosch, Dirk [2 ,4 ,5 ]
van Maris, Antonius J. A. [1 ,3 ]
Pronk, Jack T. [1 ,2 ,3 ]
Daran, Jean-Marc [1 ,2 ,3 ]
机构
[1] Delft Univ Technol, Dept Biotechnol, NL-2628 BC Delft, Netherlands
[2] Platform Green Synthet Biol, NL-2600 GA Delft, Netherlands
[3] Kluyver Ctr Genom Ind Fermentat, NL-2600 GA Delft, Netherlands
[4] Plant Res Int, NL-6700 AA Wageningen, Netherlands
[5] Ctr Biosyst Genom, NL-6700 AB Wageningen, Netherlands
关键词
Saccharomyces cerevisiae; Naringenin; de novo; Flavonoids; Metabolic engineering; TYROSINE AMMONIA-LYASE; ESCHERICHIA-COLI; IN-VIVO; BIOSYNTHESIS; YEAST; EXPRESSION; ARABIDOPSIS; GENE; PATHWAY; GENOME;
D O I
10.1186/1475-2859-11-155
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Flavonoids comprise a large family of secondary plant metabolic intermediates that exhibit a wide variety of antioxidant and human health-related properties. Plant production of flavonoids is limited by the low productivity and the complexity of the recovered flavonoids. Thus to overcome these limitations, metabolic engineering of specific pathway in microbial systems have been envisaged to produce high quantity of a single molecules. Result: Saccharomyces cerevisiae was engineered to produce the key intermediate flavonoid, naringenin, solely from glucose. For this, specific naringenin biosynthesis genes from Arabidopsis thaliana were selected by comparative expression profiling and introduced in S. cerevisiae. The sole expression of these A. thaliana genes yielded low extracellular naringenin concentrations (<5.5 mu M). To optimize naringenin titers, a yeast chassis strain was developed. Synthesis of aromatic amino acids was deregulated by alleviating feedback inhibition of 3-deoxy-d-arabinose-heptulosonate-7-phosphate synthase (Aro3, Aro4) and byproduct formation was reduced by eliminating phenylpyruvate decarboxylase (Aro10, Pdc5, Pdc6). Together with an increased copy number of the chalcone synthase gene and expression of a heterologous tyrosine ammonia lyase, these modifications resulted in a 40 fold increase of extracellular naringenin titers (to approximately 200 mu M) in glucose-grown shake flask cultures. In aerated, pH controlled batch reactors, extracellular naringenin concentrations of over 400 mu M were reached. Conclusion: The results reported in this study demonstrate that S. cerevisiae is capable of de novo production of naringenin by coexpressing the naringenin production genes from A. thaliana and optimization of the flux towards the naringenin pathway. The engineered yeast naringenin production host provides a metabolic chassis for production of a wide range of flavonoids and exploration of their biological functions.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] De novo biosynthesis of carminic acid in Saccharomyces cerevisiae
    Zhang, Qian
    Wang, Xinglong
    Zeng, Weizhu
    Xu, Sha
    Li, Dong
    Yu, Shiqin
    Zhou, Jingwen
    METABOLIC ENGINEERING, 2023, 76 : 50 - 62
  • [42] De Novo Biosynthesis of Vindoline and Catharanthine in Saccharomyces cerevisiae
    Gao, Di
    Liu, Tengfei
    Gao, Jucan
    Xu, Junhao
    Gou, Yuanwei
    Pan, Yingjia
    Li, Dongfang
    Ye, Cuifang
    Pan, Ronghui
    Huang, Lei
    Xu, Zhinan
    Lian, Jiazhang
    BIODESIGN RESEARCH, 2022, 2022
  • [43] De Novo Production of Hydroxytyrosol by Saccharomyces cerevisiae-Escherichia coli Coculture Engineering
    Liu, Yingjie
    Song, Dong
    Hu, Haitao
    Yang, Ruijin
    Lyu, Xiaomei
    ACS SYNTHETIC BIOLOGY, 2022, 11 (09): : 3067 - 3077
  • [44] Optimizing hexanoic acid biosynthesis in Saccharomyces cerevisiae for the de novo production of olivetolic acid
    Schaefer, Kilan J.
    Aras, Marco
    Boles, Eckhard
    Kayser, Oliver
    BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS, 2024, 17 (01):
  • [45] Engineering the Saccharomyces cerevisiae isoprenoid pathway for de novo production of aromatic monoterpenes in wine
    Herrero, Oscar
    Ramon, Daniel
    Orejas, Margarita
    METABOLIC ENGINEERING, 2008, 10 (02) : 78 - 86
  • [46] Metabolic engineering of Saccharomyces cerevisiae for the de novo production of psilocybin and related tryptamine derivatives
    Milne, N.
    Thomsen, P.
    Knudsen, N. Molgaard
    Rubaszka, P.
    Kristensen, M.
    Borodina, I
    METABOLIC ENGINEERING, 2020, 60 (60) : 25 - 36
  • [47] De novo Biosynthesis of Salvianolic Acid B in Saccharomyces cerevisiae Engineered with the Rosmarinic Acid Biosynthetic Pathway
    Xu, Yingpeng
    Geng, Lijun
    Zhang, Yiwen
    Jones, J. Andrew
    Zhang, Meihong
    Chen, Yuan
    Tan, Ronghui
    Koffas, Mattheos A. G.
    Wang, Zhengtao
    Zhao, Shujuan
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2022, 70 (07) : 2290 - 2302
  • [48] An engineered fatty acid synthase combined with a carboxylic acid reductase enables de novo production of 1-octanol in Saccharomyces cerevisiae
    Sandra Henritzi
    Manuel Fischer
    Martin Grininger
    Mislav Oreb
    Eckhard Boles
    Biotechnology for Biofuels, 11
  • [49] An engineered fatty acid synthase combined with a carboxylic acid reductase enables de novo production of 1-octanol in Saccharomyces cerevisiae
    Henritzi, Sandra
    Fischer, Manuel
    Grininger, Martin
    Oreb, Mislav
    Boles, Eckhard
    BIOTECHNOLOGY FOR BIOFUELS, 2018, 11
  • [50] Enhancing oleanolic acid production in engineered Saccharomyces cerevisiae
    Zhao, Yujia
    Fan, Jingjing
    Wang, Chen
    Feng, Xudong
    Li, Chun
    BIORESOURCE TECHNOLOGY, 2018, 257 : 339 - 343