XXZ-type Bethe ansatz equations and quasi-polynomials

被引:3
|
作者
Li, Jian Rong [1 ]
Tarasov, Vitaly [1 ]
机构
[1] Lanzhou Univ, Dept Math, Lanzhou 730000, Peoples R China
基金
美国国家科学基金会;
关键词
D O I
10.1088/1742-6596/411/1/012020
中图分类号
O59 [应用物理学];
学科分类号
摘要
We study solutions of the Bethe ansatz equation for the XXZ-type integrable model associated with the Lie algebra SIN. We give a correspondence between solutions of the Bethe ansatz equations and collections of quasi-polynomials. This extends the results of E. Mukhin and A. Varchenko for the XXX-type model and the trigonometric Gaudin model.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Thermodynamics of the limiting cases of the XXZ model without Bethe ansatz
    Rojas, O
    de Souza, S
    Silva, ECA
    Thomaz, MT
    BRAZILIAN JOURNAL OF PHYSICS, 2001, 31 (04) : 577 - 582
  • [22] Algebraic Bethe Ansatz for the XXZ Gaudin Models with Generic Boundary
    Crampe, Nicolas
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2017, 13
  • [23] Matrix coordinate Bethe Ansatz: applications to XXZ and ASEP models
    Crampe, N.
    Ragoucy, E.
    Simon, D.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (40)
  • [24] Degrees of the stretched Kostka quasi-polynomials
    Gao, Shiliang
    Gao, Yibo
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2024, 56 (05) : 1748 - 1761
  • [25] Solutions of the bethe equations for the XXZ model
    Tarasov V.O.
    Journal of Mathematical Sciences, 2005, 125 (2) : 239 - 241
  • [26] Quasi-Polynomials of Capelli. II
    Antonov, S. Yu
    Antonova, A., V
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2020, 20 (01): : 4 - 16
  • [27] The Bethe ansatz for the six-vertex and XXZ models: An exposition
    Duminil-Copin, Hugo
    Gagnebin, Maxime
    Harel, Matan
    Manolescu, Ioan
    Tassion, Vincent
    PROBABILITY SURVEYS, 2018, 15 : 102 - 130
  • [28] Closed balls for interpolating quasi-polynomials
    Wen, Jiajin
    Cheng, Sui Sun
    COMPUTATIONAL & APPLIED MATHEMATICS, 2011, 30 (03): : 543 - 568
  • [29] Maximal periods of (Ehrhart) quasi-polynomials
    Beck, Matthias
    Sam, Steven V.
    Woods, Kevin M.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2008, 115 (03) : 517 - 525
  • [30] Characteristic polynomials, Ehrhart quasi-polynomials, and torus groups
    Lawrence, J
    JOURNAL OF NUMBER THEORY, 2006, 117 (02) : 315 - 329