XXZ-type Bethe ansatz equations and quasi-polynomials

被引:3
|
作者
Li, Jian Rong [1 ]
Tarasov, Vitaly [1 ]
机构
[1] Lanzhou Univ, Dept Math, Lanzhou 730000, Peoples R China
基金
美国国家科学基金会;
关键词
D O I
10.1088/1742-6596/411/1/012020
中图分类号
O59 [应用物理学];
学科分类号
摘要
We study solutions of the Bethe ansatz equation for the XXZ-type integrable model associated with the Lie algebra SIN. We give a correspondence between solutions of the Bethe ansatz equations and collections of quasi-polynomials. This extends the results of E. Mukhin and A. Varchenko for the XXX-type model and the trigonometric Gaudin model.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] ANALYSIS OF THE BETHE ANSATZ EQUATIONS OF THE XXZ MODEL
    BABELON, O
    DEVEGA, HJ
    VIALLET, CM
    NUCLEAR PHYSICS B, 1983, 220 (01) : 13 - 34
  • [2] Dynamical Bethe algebra and functions on pairs of quasi-polynomials
    Varchenko, A. N.
    Slinkin, A. M.
    Thompson, D.
    RUSSIAN MATHEMATICAL SURVEYS, 2021, 76 (04) : 653 - 684
  • [3] QUASI-EXACTLY SOLVABLE SCHRODINGER EQUATIONS, SYMMETRIC POLYNOMIALS AND FUNCTIONAL BETHE ANSATZ METHOD
    Quesne, Christiane
    ACTA POLYTECHNICA, 2018, 58 (02) : 118 - 127
  • [4] Quasi-polynomials of Capelli
    Antonov, S. Yu
    Antonova, A., V
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2015, 15 (04): : 371 - 382
  • [5] Functional Relations and Bethe Ansatz for the XXZ Chain
    Rafael I. Nepomechie
    Journal of Statistical Physics, 2003, 111 : 1363 - 1376
  • [6] Functional relations and Bethe Ansatz for the XXZ chain
    Nepomechie, RI
    JOURNAL OF STATISTICAL PHYSICS, 2003, 111 (5-6) : 1363 - 1376
  • [7] Finite Type Modules and Bethe Ansatz Equations
    Feigin, Boris
    Jimbo, Michio
    Miwa, Tetsuji
    Mukhin, Eugene
    ANNALES HENRI POINCARE, 2017, 18 (08): : 2543 - 2579
  • [8] Finite Type Modules and Bethe Ansatz Equations
    Boris Feigin
    Michio Jimbo
    Tetsuji Miwa
    Eugene Mukhin
    Annales Henri Poincaré, 2017, 18 : 2543 - 2579
  • [9] Hermite quasi-polynomials
    Marikhin, V. G.
    RUSSIAN MATHEMATICAL SURVEYS, 2018, 73 (05) : 931 - 933
  • [10] Bethe Ansatz Solutions to Quasi Exactly Solvable Difference Equations
    Sasaki, Ryu
    Yang, Wen-Li
    Zhang, Yao-Zhong
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2009, 5