Convergence rate of Krasulina estimator

被引:0
|
作者
Chen, Jiangning [1 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30313 USA
关键词
PCA; Incremental; Online updating; Covariance matrix; Rate of convergence; Adaptive estimation; SPECTRAL PROJECTORS; PCA; APPROXIMATION;
D O I
10.1016/j.spl.2019.108562
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Principal component analysis (PCA) is one of the most commonly used statistical procedures with a wide range of applications. Consider the points X-1, X-2 , ..., X-n are vectors drawn i.i.d. from a distribution with mean zero and covariance Sigma, where Sigma is unknown. Let A(n) = XnXnT, then E[A(n)] = Sigma. This paper considers the problem of finding the smallest eigenvalue and eigenvector of matrix Sigma. A classical estimator of this type is due to (Krasulina, 1969). We are going to state the convergence proof of Krasulina for the smallest eigenvalue and corresponding eigenvector, and then find their convergence rate. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] On the rate of uniform convergence of the product-limit estimator: Strong and weak laws
    Chen, K
    Lo, SH
    ANNALS OF STATISTICS, 1997, 25 (03): : 1050 - 1087
  • [32] Convergence Rate of the L-N Estimator in Poisson-Gamma Models
    Na Xia~1 Zhong-zhan Zhang~(1*) Zhi-liang Ying~21 College of Applied Sciences
    Acta Mathematicae Applicatae Sinica(English Series), 2006, (04) : 639 - 654
  • [33] Uniform Convergence Rate of the Kernel Density Estimator Adaptive to Intrinsic Volume Dimension
    Kim, Jisu
    Shin, Jaehyeok
    Rinaldo, Alessandro
    Wasserman, Larry
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [34] THE CONVERGENCE RATE AND ASYMPTOTIC DISTRIBUTION OF THE BOOTSTRAP QUANTILE VARIANCE ESTIMATOR FOR IMPORTANCE SAMPLING
    Liu, Jingchen
    Yang, Xuan
    ADVANCES IN APPLIED PROBABILITY, 2012, 44 (03) : 815 - 841
  • [35] A NOTE ON THE INTERPRETATION OF THE BAHADUR BOUND AND THE RATE OF CONVERGENCE OF THE MAXIMUM-LIKELIHOOD ESTIMATOR
    FU, JC
    KASS, RE
    STATISTICS & PROBABILITY LETTERS, 1984, 2 (05) : 269 - 273
  • [36] A strong convergence rate of estimator of variance change in linear processes and its applications
    Qin, Ruibing
    Liu, Weiqi
    Tian, Zheng
    STATISTICS, 2017, 51 (02) : 314 - 330
  • [37] Uniform Rate of Weak Convergence of the Minimum Contrast Estimator in the Ornstein–Uhlenbeck Process
    Jaya P. N. Bishwal
    Methodology and Computing in Applied Probability, 2010, 12 : 323 - 334
  • [38] Strong convergence rate of the least median absolute estimator in linear regression models
    Ip, WC
    Yang, Y
    Kwan, PYK
    Kwan, YK
    STATISTICAL PAPERS, 2003, 44 (02) : 183 - 201
  • [39] Convergence rate of the L-N estimator in poisson-gamma models
    Xia N.
    Zhang Z.-Z.
    Ying Z.-L.
    Acta Mathematicae Applicatae Sinica, 2006, 22 (4) : 639 - 654
  • [40] Rate of convergence for the maximum likelihood estimator in fractional Ornstein-Uhlenbeck processes
    Sun, Lin
    Liu, Youzhu
    Xu, Weijun
    Xiao, Weilin
    INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2012, 15 (02): : 461 - 466