On the large time behavior of solutions of fourth order parabolic equations and ε-entropy of their attractors

被引:20
|
作者
Efendiev, M. A. [1 ]
Peletier, L. A.
机构
[1] Tech Univ Munich, GSF, Ctr Math Sci, D-85747 Garchung Munich, Germany
[2] Leiden Univ, Math Inst, NL-2300 RA Leiden, Netherlands
[3] CWI, NL-1090 GB Amsterdam, Netherlands
关键词
D O I
10.1016/j.crma.2006.10.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the large time behavior of solutions of a class of fourth order parabolic equations defined on unbounded domains. Specific examples of the equations we study are the Swift-Hohenberg equation and the Extended Fisher-Kolmogorov equation. We establish the existence of a global attractor in a local topology. Since the dynamics is infinite dimensional, we use the Kolmogorov epsilon-entropy as a measure, deriving a sharp upper and lower bound.
引用
收藏
页码:93 / 96
页数:4
相关论文
共 50 条