MnO@C nanorods derived from metal-organic frameworks as anode for superiorly stable and long-life sodium-ion batteries

被引:45
|
作者
Zhang, Xiaojie [1 ]
Zhu, Guang [2 ]
Yan, Dong [1 ]
Lu, Ting [1 ]
Pan, Likun [1 ]
机构
[1] East China Normal Univ, Shanghai Key Lab Magnet Resonance, Sch Phys & Mat Sci, Shanghai 200062, Peoples R China
[2] Suzhou Univ, Anhui Key Lab Spin Electron & Nanomat, Suzhou 234000, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
MnO nanorods; Carbon coating; Metal-organic frameworks; Sodium-ion batteries; Long-life cycling; HIGH-PERFORMANCE; CARBON NANOTUBES; POROUS CARBON; STORAGE; HOLLOW; COMPOSITE; ENERGY; MICROSPHERES; OXIDE; NANOCOMPOSITES;
D O I
10.1016/j.jallcom.2017.03.314
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Porous MnO@C nanorods were synthesized simply by annealing Mn-based metal-organic frameworks precursor. The morphology, structure and electrochemical performance of MnO@C hybrid were characterized by scanning electron microscopy, nitrogen adsorption/desorption isotherms, galvanostatic charge/discharge tests, cyclic voltammetry and electrochemical impendence spectroscopy. When used as anode material for sodium-ion batteries, the MnO@C hybrid exhibits a high reversible specific capacity of 260 mAh g(-1) after 100 cycles at a current density of 50 mA g(-1). When the current density is increased to 2 A g(-1), the MnO@C delivers a superior long-life cycling performance with a capacity of 140 mAh g(-1) at very high current density of 2 A g(-1). The excellent electrochemical performance of MnO@C can be attributed to its unique porous structure with MnO nanoparticles embedded in carbon matrix, which can apparently increase the electrical conductivity and buffer the volume change during the charge/discharge process. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:575 / 580
页数:6
相关论文
共 50 条
  • [31] An overview of metal-organic frameworks-derived carbon as anode materials for sodium- and potassium-ion batteries
    Zhang, Y.
    Sha, M.
    Fu, Q.
    Zhao, H.
    Lei, Y.
    MATERIALS TODAY SUSTAINABILITY, 2022, 18
  • [32] Metal-organic framework derived FeS/MoS2 composite as a high performance anode for sodium-ion batteries
    Fu, Likang
    Xiong, Wenqi
    Liu, Qiming
    Wan, Shuyun
    Kang, Chenxia
    Li, Gaofeng
    Chu, Jun
    Chen, Yucheng
    Yuan, Shengjun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 869
  • [33] Progress of nanostructured metal oxides derived from metal-organic frameworks as anode materials for lithium-ion batteries
    Reddy, R. Chenna Krishna
    Lin, Jia
    Chen, Yueying
    Zeng, Chenghui
    Lin, Xiaoming
    Cai, Yuepeng
    Su, Cheng-Yong
    COORDINATION CHEMISTRY REVIEWS, 2020, 420
  • [34] MgFe2O4 hollow microboxes derived from metal-organic-frameworks as anode material for sodium-ion batteries
    Guo, Yuan
    Zhu, Youyu
    Yuan, Chao
    Wang, Chengyang
    MATERIALS LETTERS, 2017, 199 : 101 - 104
  • [35] NiO/CNTs derived from metal-organic frameworks as superior anode material for lithium-ion batteries
    Yingqiao Xu
    Shujin Hou
    Guang Yang
    Ting Lu
    Likun Pan
    Journal of Solid State Electrochemistry, 2018, 22 : 785 - 795
  • [36] NiO/CNTs derived from metal-organic frameworks as superior anode material for lithium-ion batteries
    Xu, Yingqiao
    Hou, Shujin
    Yang, Guang
    Lu, Ting
    Pan, Likun
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2018, 22 (03) : 785 - 795
  • [37] Covalent-organic-frameworks derived N-doped porous carbon materials as anode for superior long-life cycling lithium and sodium ion batteries
    Zhang, Xiaojie
    Zhu, Guang
    Wang, Miao
    Li, Jiabao
    Lu, Ting
    Pan, Likun
    CARBON, 2017, 116 : 686 - 694
  • [38] Microsized Gray Tin as a High-Rate and Long-Life Anode Material for Advanced Sodium-Ion Batteries
    Zhu, Yansong
    Yao, Qian
    Shao, Ruiwen
    Wang, Cheng
    Yan, Weishan
    Ma, Jizhen
    Liu, Duo
    Yang, Jian
    Qian, Yitai
    NANO LETTERS, 2022, : 7976 - 7983
  • [39] Red phosphorus filled biomass carbon as high-capacity and long-life anode for sodium-ion batteries
    Tian, Weifeng
    Wang, Li
    Huo, Kaifu
    He, Xiangming
    JOURNAL OF POWER SOURCES, 2019, 430 : 60 - 66
  • [40] Microsized Gray Tin as a High-Rate and Long-Life Anode Material for Advanced Sodium-Ion Batteries
    Zhu, Yansong
    Yao, Qian
    Shao, Ruiwen
    Wang, Cheng
    Yan, Weishan
    Ma, Jizhen
    Liu, Duo
    Yang, Jian
    Qian, Yitai
    Nano Letters, 2022, 22 (19): : 7976 - 7983