Phase portraits of the quadratic polynomial Lienard differential systems

被引:2
|
作者
Gouveia, Marcio R. A. [1 ]
Llibre, Jaume [2 ]
Roberto, Luci Any [1 ]
机构
[1] Ibilce UNESP, Dept Matemat, BR-15054000 Sao Jose Do Rio Preto, Brazil
[2] Univ Autonoma Barcelona, Dept Matemat, Barcelona 08193, Catalonia, Spain
基金
巴西圣保罗研究基金会; 欧盟地平线“2020”;
关键词
Quadratic system; Lienard system; Poincare compactification; Global phase portraits; LIOUVILLIAN 1ST INTEGRALS; LIMIT-CYCLES; WEAK FOCUS; EQUATIONS; CLASSIFICATION; NONEXISTENCE; BIFURCATIONS; UNIQUENESS; EXISTENCE; GEOMETRY;
D O I
10.1017/prm.2020.10
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We classify the global phase portraits in the Poincare disc of the quadratic polynomial Lienard differential systems (x)over dot = y, (y)over dot = (ax + b)y + cx(2) + dx + e, where (x, y) is an element of R-2 are the variables and a, b, c, d, e are real parameters.
引用
收藏
页码:202 / 216
页数:15
相关论文
共 50 条
  • [21] Liouvillian First Integrals for Generalized Lienard Polynomial Differential Systems
    Llibre, Jaume
    Valls, Claudia
    ADVANCED NONLINEAR STUDIES, 2013, 13 (04) : 825 - 835
  • [22] Invariant Algebraic Curves of Generalized Lienard Polynomial Differential Systems
    Gine, Jaume
    Llibre, Jaume
    MATHEMATICS, 2022, 10 (02)
  • [23] On the Number of Limit Cycles of Discontinuous Lienard Polynomial Differential Systems
    Jiang, Fangfang
    Ji, Zhicheng
    Wang, Yan
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (14):
  • [24] Bifurcations of the Riccati Quadratic Polynomial Differential Systems
    Llibre, Jaume
    Lopes, Bruno D.
    da Silva, Paulo R.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (06):
  • [25] Global Phase Portraits for the Abel Quadratic Polynomial Differential Equations of the Second Kind With Z2-symmetries
    Llibre, Jaume
    Valls, Claudia
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2018, 61 (01): : 149 - 165
  • [26] On the nonexistence of Liouvillian first integrals for generalized Lienard polynomial differential systems
    Cheze, Guillaume
    Cluzeau, Thomas
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2013, 20 (04) : 475 - 479
  • [27] Liouvillian first integrals for a class of generalized Lienard polynomial differential systems
    Llibre, Jaume
    Valls, Claudia
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2016, 146 (06) : 1195 - 1210
  • [28] MAXIMUM NUMBER OF LIMIT CYCLES FOR GENERALIZED LIENARD POLYNOMIAL DIFFERENTIAL SYSTEMS
    Berbache, Aziza
    Bendjeddou, Ahmed
    Benadouane, Sabah
    MATHEMATICA BOHEMICA, 2021, 146 (02): : 151 - 165
  • [29] On the Number of Limit Cycles for Discontinuous Generalized Lienard Polynomial Differential Systems
    Jiang, Fangfang
    Shi, Junping
    Sun, Jitao
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (10):
  • [30] Phase portraits of two classes of Lienard equations
    Li, Jie
    Llibre, Jaume
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2023, 29 (01):