Deep Learning-Based Sentimental Analysis for Large-Scale Imbalanced Twitter Data

被引:8
|
作者
Jamal, Nasir [1 ]
Chen, Xianqiao [1 ]
Aldabbas, Hamza [2 ]
机构
[1] Wuhan Univ Technol, Sch Comp Sci & Technol, Wuhan 430070, Hubei, Peoples R China
[2] Al Balqa Appl Univ, Prince Abdullah bin Ghazi Fac Informat & Technol, Al Salt 19117, Jordan
关键词
data mining; deep learning; principal component analysis; emotions detection; sentimental analysis; text classification; CLASSIFICATION; FACES;
D O I
10.3390/fi11090190
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Emotions detection in social media is very effective to measure the mood of people about a specific topic, news, or product. It has a wide range of applications, including identifying psychological conditions such as anxiety or depression in users. However, it is a challenging task to distinguish useful emotions' features from a large corpus of text because emotions are subjective, with limited fuzzy boundaries that may be expressed in different terminologies and perceptions. To tackle this issue, this paper presents a hybrid approach of deep learning based on TensorFlow with Keras for emotions detection on a large scale of imbalanced tweets' data. First, preprocessing steps are used to get useful features from raw tweets without noisy data. Second, the entropy weighting method is used to compute the importance of each feature. Third, class balancer is applied to balance each class. Fourth, Principal Component Analysis (PCA) is applied to transform high correlated features into normalized forms. Finally, the TensorFlow based deep learning with Keras algorithm is proposed to predict high-quality features for emotions classification. The proposed methodology is analyzed on a dataset of 1,600,000 tweets collected from the website 'kaggle'. Comparison is made of the proposed approach with other state of the art techniques on different training ratios. It is proved that the proposed approach outperformed among other techniques.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Human mitochondrial protein complexes revealed by large-scale coevolution analysis and deep learning-based structure modeling
    Pei, Jimin
    Zhang, Jing
    Cong, Qian
    BIOINFORMATICS, 2022, 38 (18) : 4301 - 4311
  • [22] Sentimental analysis over twitter data using clustering based machine learning algorithm
    Jacob, Sharon Susan
    Vijayakumar, R.
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021,
  • [23] ALLIE: Active Learning on Large-scale Imbalanced Graphs
    Cui, Limeng
    Tang, Xianfeng
    Katariya, Sumeet
    Rao, Nikhil
    Agrawal, Pallav
    Subbian, Karthik
    Lee, Dongwon
    PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22), 2022, : 690 - 698
  • [24] Hygeia: A Multilabel Deep Learning-Based Classification Method for Imbalanced Electrocardiogram Data
    Xu, Xiaolong
    Xu, Haoyan
    Wang, Liying
    Zhang, Yuanyuan
    Xaio, Fu
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (04) : 2480 - 2493
  • [25] CAS Landslide Dataset: A Large-Scale and Multisensor Dataset for Deep Learning-Based Landslide Detection
    Xu, Yulin
    Ouyang, Chaojun
    Xu, Qingsong
    Wang, Dongpo
    Zhao, Bo
    Luo, Yutao
    SCIENTIFIC DATA, 2024, 11 (01)
  • [26] CAS Landslide Dataset: A Large-Scale and Multisensor Dataset for Deep Learning-Based Landslide Detection
    Yulin Xu
    Chaojun Ouyang
    Qingsong Xu
    Dongpo Wang
    Bo Zhao
    Yutao Luo
    Scientific Data, 11
  • [27] Textured Mesh Quality Assessment: Large-scale Dataset and Deep Learning-based Quality Metric
    Nehme, Yana
    Delanoy, Johanna
    Dupont, Florent
    Farrugia, Jean-Philippe
    Le Callet, Patrick
    Lavoue, Guillaume
    ACM TRANSACTIONS ON GRAPHICS, 2023, 42 (03):
  • [28] Deep Learning-Based Classification and Reconstruction of Residential Scenes From Large-Scale Point Clouds
    Zhang, Liqiang
    Zhang, Liang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (04): : 1887 - 1897
  • [29] Deep learning-based large-scale named entity recognition for anatomical region of mammalian brain
    Xiaokang Chai
    Yachao Di
    Zhao Feng
    Yue Guan
    Guoqing Zhang
    Anan Li
    Qingming Luo
    Quantitative Biology, 2022, 10 (03) : 253 - 263
  • [30] Deep learning-based transient stability assessment framework for large-scale modern power system
    Li, Xin
    Liu, Chenkai
    Guo, Panfeng
    Liu, Shengchi
    Ning, Jing
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2022, 139