Variations in piscivory of invasive largemouth bass Micropterus salmoides associated with pond environments

被引:10
|
作者
Tsunoda, Hiroshi [1 ]
Mitsuo, Yoshito [2 ]
机构
[1] Ctr Environm Sci Saitama, 914 Kamitanadare, Kazo, Saitama 3470115, Japan
[2] Niigata Univ, Ctr Toki & Ecol Restorat, 1101-1 Niibo Katagami, Sado, Niigata 9520103, Japan
关键词
Aquatic vegetation; Micropterus salmoides; Non-indigenous species; Refuge effect; Stomach contents; PREY SELECTION; FARM PONDS; FISH; BLUEGILL; LAKE; TURBIDITY; DIET; COMPLEXITY; PREDATORS; DIVERSITY;
D O I
10.1007/s10201-018-0544-4
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Introductions of non-native predatory fishes can be a major driver of aquatic biodiversity loss. The largemouth bass Micropterus salmoides (L.) has been introduced throughout much of the world, thereafter negatively affecting native faunal communities owing to its predatory impact. To investigate the environmental factors affecting the predatory performance of invasive bass, we examined the stomach contents and habitat characteristics of bass in 15 irrigation farm ponds in northeastern Japan. The food habits of the bass populations differed among the studied ponds: the predominant prey items were fishes among bass in seven of the ponds, whereas aquatic invertebrates (mainly insects and zooplankton) were the predominant taxa in the diets of bass in the eight remaining ponds, with the onset of piscivory related to body size. The results of multivariate analysis indicated that the extent to which the bass consumed fish was positively associated with fish prey abundance and negatively associated with percentage of aquatic vegetation coverage. We suggest that the extent of aquatic vegetation coverage strongly influenced the predation efficiency of bass in the ponds. These findings might be employed to assess a pond ecosystem's vulnerability to invasive largemouth bass and to reduce the predator's impact on native fish species by improvements to the habitat.
引用
收藏
页码:271 / 276
页数:6
相关论文
共 50 条
  • [31] The role of TNF-α in the phagocytosis of largemouth bass (Micropterus salmoides)
    Yang, Shun
    Ma, Yuanxin
    Lou, Xiaocong
    Zhou, Zhewei
    Zhang, Huimin
    Yi, Shunfa
    Cheng, Yan
    Qian, Shichao
    Huang, Mengmeng
    Fei, Hui
    FISH & SHELLFISH IMMUNOLOGY, 2023, 132
  • [32] INDUCED SPAWNING OF LARGEMOUTH BASS [MICROPTERUS-SALMOIDES (LACEPEDE)]
    CARLSON, AR
    TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY, 1973, 102 (02) : 442 - 444
  • [33] HOOKING MORTALITY OF JUVENILE LARGEMOUTH BASS, MICROPTERUS-SALMOIDES
    PELZMAN, RJ
    CALIFORNIA FISH AND GAME, 1978, 64 (03): : 185 - 188
  • [34] The dynamics of aerial and aquatic feeding in largemouth bass (Micropterus salmoides)
    Axlid, Erik
    Higham, Tim
    INTEGRATIVE AND COMPARATIVE BIOLOGY, 2024, 64 : S28 - S28
  • [35] Effects of Astaxanthin on Ovarian Development of Largemouth Bass (Micropterus salmoides)
    Tao, Mingwei
    Zhou, Hangxian
    Wei, Jie
    Xu, Qiyou
    AQUACULTURE NUTRITION, 2024, 2024
  • [36] Retrospect of fishmeal substitution in largemouth bass (Micropterus salmoides): a review
    Liu, Yuanyi
    Pu, Changchang
    Pei, Zhuo
    Zhang, Weichuan
    Wei, Zihui
    Chen, Hongyu
    Huang, Yong
    FISH PHYSIOLOGY AND BIOCHEMISTRY, 2025, 51 (01) : 1 - 17
  • [37] Maternally transferred mercury in wild largemouth bass, Micropterus salmoides
    Sackett, Dana K.
    Aday, D. Derek
    Rice, James A.
    Cope, W. Gregory
    ENVIRONMENTAL POLLUTION, 2013, 178 : 493 - 497
  • [38] Isolation and characterization of 40 SNP in largemouth bass (Micropterus salmoides)
    Jiajia Fan
    Junjie Bai
    Dongmei Ma
    Conservation Genetics Resources, 2020, 12 : 57 - 60
  • [39] Identification of feed enhancers for juvenile largemouth bass Micropterus salmoides
    Kubitza, F
    Lovshin, LL
    Lovell, RT
    AQUACULTURE, 1997, 148 (2-3) : 191 - 200
  • [40] AN EPIZOOTIC OF EDWARDSIELLA-TARDA IN LARGEMOUTH BASS (MICROPTERUS, SALMOIDES)
    FRANCISFLOYD, R
    REED, P
    BOLON, B
    ESTES, J
    MCKINNEY, S
    JOURNAL OF WILDLIFE DISEASES, 1993, 29 (02) : 334 - 336