The (G'/G)-expansion method for finding traveling wave solutions of nonlinear partial differential equations in mathematical physics

被引:222
|
作者
Zayed, E. M. E. [1 ]
Gepreel, Khaled A. [1 ]
机构
[1] Zagazig Univ, Fac Sci, Dept Math, Zagazig 44519, Egypt
关键词
functional analysis; Korteweg-de Vries equation; linear differential equations; nonlinear differential equations; rational functions; reaction-diffusion systems; solitons; VARIANT BOUSSINESQ EQUATIONS; EXTENDED TANH-FUNCTION; SUB-ODE METHOD; EVOLUTION-EQUATIONS; SOLITON-SOLUTIONS; EXPANSION METHOD; SHALLOW-WATER; F-EXPANSION; KDV-MKDV; EXPLICIT;
D O I
10.1063/1.3033750
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
I the present paper, we construct the traveling wave solutions involving parameters of the combined Korteweg-de Vries-modified Korteweg-de Vries equation, the reaction-diffusion equation, the compound KdV-Burgers equation, and the generalized shallow water wave equation by using a new approach, namely, the (G(')/G)-expansion method, where G=G(xi) satisfies a second order linear ordinary differential equation. When the parameters take special values, the solitary waves are derived from the traveling waves. The traveling wave solutions are expressed by the hyperbolic functions, the trigonometric functions, and the rational functions.
引用
收藏
页数:12
相关论文
共 50 条