A non-local semilinear eigenvalue problem

被引:7
|
作者
Franzina, Giovanni [1 ]
Licheri, Danilo [2 ]
机构
[1] CNR, Ist Applicaz Calcolo M Picone, Via Taurini 19, I-00185 Rome, Italy
[2] Univ Cagliari, Dipartimento Matemat & Informat, Via Osped 72, I-09124 Cagliari, Italy
基金
瑞典研究理事会;
关键词
Eigenvalues; Constrained critical points; Lane-Emden equation; ELLIPTIC-EQUATIONS;
D O I
10.1007/s13540-022-00104-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that positive solutions of the fractional Lane-Emden equation with homogeneous Dirichlet boundary conditions satisfy pointwise estimates in terms of the best constant in Poincare's inequality on all open sets, and are isolated in L-1 on smooth bounded ones, whence we deduce the isolation of the first non-local semilinear eigenvalue.
引用
收藏
页码:2193 / 2221
页数:29
相关论文
共 50 条
  • [21] SOME EIGENVALUE PROBLEMS WITH NON-LOCAL BOUNDARY CONDITIONS AND APPLICATIONS
    Abreu, Rafael
    Morales-Rodrigo, Cristian
    Suarez, Antonio
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (06) : 2465 - 2474
  • [22] Regularity of Radial Extremal Solutions for Some Non-Local Semilinear Equations
    Capella, Antonio
    Davila, Juan
    Dupaigne, Louis
    Sire, Yannick
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (08) : 1353 - 1384
  • [23] On the Non-local Problem for a Boussinesq Type Equations
    Dekhkonov, Kh. T.
    Fayziev, Yu. E.
    Ashurov, R. R.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (03) : 1023 - 1031
  • [24] A Resonance Problem for Non-Local Elliptic Operators
    Fiscella, Alessio
    Servadei, Raffaella
    Valdinoci, Enrico
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2013, 32 (04): : 411 - 431
  • [25] Optimization of the shape for a non-local control problem
    Cheng, Zhiwei
    Mikayelyan, Hayk
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2024, 27 (05) : 2482 - 2501
  • [26] NON-LOCAL CHARGED FIELDS AND THE CONFINEMENT PROBLEM
    SZLACHANYI, K
    PHYSICS LETTERS B, 1984, 147 (4-5) : 335 - 338
  • [27] Error estimates for a non-local thermistor problem
    Sidi Ammi, Moulay Rchid
    APPLIED MATHEMATICS LETTERS, 2008, 21 (11) : 1166 - 1171
  • [28] The complement value problem for non-local operators
    Sun, Wei
    STOCHASTICS AND DYNAMICS, 2020, 20 (03)
  • [29] Galerkin method applied for a non-local problem
    Department of Mathematics, Faculty of Sciences, Annaba University, Algeria
    不详
    Int. J. Appl. Math. Stat., D10 (63-71):
  • [30] Remarks on a non-local boundary value problem
    Webb, J. R. L.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (02) : 1075 - 1077