A finite element variational multiscale method for incompressible flows based on the construction of the projection basis functions

被引:4
|
作者
Yu, Jiaping [1 ]
Zheng, Haibiao [1 ]
Shi, Feng [2 ]
机构
[1] Xi An Jiao Tong Univ, Coll Sci, Xian 710049, Peoples R China
[2] Chinese Acad Sci, Lab Engn & Sci Comp, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
关键词
incompressible flows; variational multiscale (VMS) method; projection; basis functions; NAVIER-STOKES EQUATIONS; LARGE-EDDY SIMULATION; STABILIZATION; FORMULATION; TURBULENCE; BUBBLES; MODELS;
D O I
10.1002/fld.2717
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this article, we present a finite element variational multiscale (VMS) method for incompressible flows based on the construction of projection basis functions and compare it with common VMS method, which is defined by a low-order finite element space Lh on the same grid as Xh for the velocity deformation tensor and a stabilization parameter a. The best algorithmic feature of our method is to construct the projection basis functions at the element level with minimal additional cost to replace the global projection operator. Finally, we give some numerical simulations of the nonlinear flow problems to show good stability and accuracy properties of the method. Copyright (c) 2011 John Wiley & Sons, Ltd.
引用
收藏
页码:793 / 804
页数:12
相关论文
共 50 条
  • [21] A finite element method for compressible and incompressible flows
    El Kadri, Nacer E. E.
    Chillali, Abdelhakim
    SN APPLIED SCIENCES, 2020, 2 (02):
  • [22] A finite element method for compressible and incompressible flows
    Nacer E. El Kadri E.
    Abdelhakim Chillali
    SN Applied Sciences, 2020, 2
  • [23] Variational eigenstrain multiscale finite element method
    Li, SF
    Gupta, A
    Liu, XH
    Mahyari, M
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2004, 193 (17-20) : 1803 - 1824
  • [24] Gauge finite element method for incompressible flows
    Weinan, E
    Liu, JG
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2000, 34 (08) : 701 - 710
  • [25] A Projection-Based Variational Multiscale Method for the Incompressible Navier-Stokes/Fourier Model
    Loewe, Johannes
    Lube, Gert
    Roehe, Lars
    BAIL 2010 - BOUNDARY AND INTERIOR LAYERS, COMPUTATIONAL AND ASYMPTOTIC METHODS, 2011, 81 : 167 - 175
  • [26] A new class of finite element variational multiscale turbulence models for incompressible magnetohydrodynamics
    Sondak, D.
    Shadid, J. N.
    Oberai, A. A.
    Pawlowski, R. P.
    Cyr, E. C.
    Smith, T. M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 295 : 596 - 616
  • [27] A variational multiscale stabilized finite element method for the solution of the Euler equations of nonhydrostatic stratified flows
    Marras, Simone
    Moragues, Margarida
    Vazquez, Mariano
    Jorba, Oriol
    Houzeaux, Guillaume
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 236 : 380 - 407
  • [28] A Multilevel Finite Element Variational Multiscale Method for Incompressible Navier-Stokes Equations Based on Two Local Gauss Integrations
    Zhang, Yamiao
    Huang, Biwu
    Zhang, Jiazhong
    Zhang, Zexia
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [29] A finite element variational multiscale method based on two-grid discretization for the steady incompressible Navier-Stokes equations
    Shang, Yueqiang
    Qin, Jin
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 300 : 182 - 198
  • [30] A FINITE ELEMENT METHOD BASED ON WEIGHTED INTERIOR PENALTIES FOR HETEROGENEOUS INCOMPRESSIBLE FLOWS
    D'Angelo, Carlo
    Zunino, Paolo
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (05) : 3990 - 4020