Enhanced piezoelectric response of hybrid biodegradable 3D poly(3-hydroxybutyrate) scaffolds coated with hydrothermally deposited ZnO for biomedical applications

被引:44
|
作者
Zviagin, Andrei S. [1 ]
Chernozem, Roman V. [1 ]
Surmeneva, Maria A. [1 ]
Pyeon, Myeongwhun [2 ]
Frank, Michael [2 ]
Ludwig, Tim [2 ]
Tutacz, Peter [2 ]
Ivanov, Yurii F. [1 ,3 ]
Mathur, Sanjay [2 ]
Surmenev, Roman A. [1 ,2 ]
机构
[1] Natl Res Tomsk Polytech Univ, Phys Mat Sci & Composite Mat Ctr, Tomsk 634050, Russia
[2] Univ Cologne, Inst Inorgan Chem, Greinstr 6, D-50939 Cologne, Germany
[3] IHCE, 2-3 Akad Chesky Ave, Tomsk 634055, Russia
关键词
Hybrid polymer scaffolds; Hydrothermal treatment; Zinc oxide; Piezoelectricity; Wettability; DIFFERENT MORPHOLOGIES; PLASMA TREATMENT; CELL-ADHESION; NANOPARTICLES; POLYMERS; GROWTH; NANOSTRUCTURES; WETTABILITY; SURFACE; FILMS;
D O I
10.1016/j.eurpolymj.2019.05.016
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Fibrous scaffolds based on biodegradable piezoelectric poly(3-hydroxybutyrate) (PHB) polymers were fabricated via electrospinning. Hydrothermal deposition of zinc oxide (ZnO) on the surfaces of fibrous PHB scaffolds resulted in a homogeneous ZnO layer that grew conformally on the porous polymeric scaffold. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) results confirmed the formation of a hexagonal wurtzite crystal structure of ZnO on the PHB fibres. XRD patterns, TEM and EDS analysis revealed a bimodal morphology with rod-like nanostructures that grew preferentially along the c-axis as well as nanoparticles that grew randomly. The piezoelectric charge coefficient d(33) for pristine PHB scaffolds was 2.9 +/- 0.1 pC.N-1, whereas after ZnO deposition, it substantially increased to 13.7 +/- 1.6 pC.N-1. Moreover, the output surface electrical potential of PHB scaffolds after ZnO deposition also substantially increased from 0.58 +/- 0.02 to 0.88 +/- 0.04 V, showing enhanced electromechanical coupling in the piezoelectric nanocomposites. The output surface electric potential for ZnO-coated PHB scaffolds was stable within 1200 loading cycles. In addition, the ZnO rod-like nanostructured surface improved the wettability of PHB fibrous scaffolds, demonstrating synergy between the ceramic and polymeric phases in PHB/ZnO composites. Therefore, the hybrid biodegradable piezoelectric scaffolds reported in the present study are potentially useful for biomedical applications, where both improved piezoelectric response and surface wettability are required.
引用
收藏
页码:272 / 279
页数:8
相关论文
共 50 条
  • [41] FDM 3D Printed Composites for Bone Tissue Engineering Based on Plasticized Poly(3-hydroxybutyrate)/poly(d,l-lactide) Blends
    Melcova, Veronika
    Svoradova, Katerina
    Mencik, Premysl
    Kontarova, Sona
    Rampichova, Michala
    Hedvicakova, Vera
    Sovkova, Vera
    Prikryl, Radek
    Vojtova, Lucy
    POLYMERS, 2020, 12 (12) : 1 - 19
  • [42] Novel 3D printable bio-based and biodegradable poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) microspheres for selective laser sintering applications
    Giubilini, A.
    Colucci, G.
    De Trane, G.
    Lupone, F.
    Badini, C.
    Minetola, P.
    Bondioli, F.
    Messori, M.
    MATERIALS TODAY SUSTAINABILITY, 2023, 22
  • [43] Biodegradable and 3D printable lysine functionalized polycaprolactone scaffolds for tissue engineering applications
    Naik, Sonali S.
    Torris, Arun
    Choudhury, Namita R.
    Dutta, Naba K.
    Nair, Kiran Sukumaran
    BIOMATERIALS ADVANCES, 2024, 159
  • [44] 3D-Printed Poly(ester urethane)/Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Bioglass Scaffolds for Tissue Engineering Applications
    Lores, Nayla J.
    Araoz, Beatriz
    Hung, Xavier
    Talou, Mariano H.
    Boccaccini, Aldo R.
    Abraham, Gustavo A.
    Hermida, elida B.
    Caracciolo, Pablo C.
    POLYMERS, 2024, 16 (23)
  • [45] Electrospinning nanofibers to 1D, 2D, and 3D scaffolds and their biomedical applications
    Zhong, Huiling
    Huang, Jun
    Wu, Jun
    Du, Jianhang
    NANO RESEARCH, 2022, 15 (02) : 787 - 804
  • [46] Electrospinning nanofibers to 1D, 2D, and 3D scaffolds and their biomedical applications
    Huiling Zhong
    Jun Huang
    Jun Wu
    Jianhang Du
    Nano Research, 2022, 15 : 787 - 804
  • [47] Printability, Mechanical and Thermal Properties of Poly(3-Hydroxybutyrate)-Poly(Lactic Acid)-Plasticizer Blends for Three-Dimensional (3D) Printing
    Kontarova, Sona
    Prikryl, Radek
    Melcova, Veronika
    Mencik, Premysl
    Horalek, Matyas
    Figalla, Silvestr
    Plavec, Roderik
    Feranc, Jozef
    Sadilek, Jiri
    Pospisilova, Aneta
    MATERIALS, 2020, 13 (21) : 1 - 28
  • [48] Characterization of 3D Printed Metal-PLA Composite Scaffolds for Biomedical Applications
    Buj-Corral, Irene
    Sanz-Fraile, Hector
    Ulldemolins, Anna
    Tejo-Otero, Aitor
    Dominguez-Fernandez, Alejandro
    Almendros, Isaac
    Otero, Jorge
    POLYMERS, 2022, 14 (13)
  • [49] Processing and properties of PLA/Mg filaments for 3D printing of scaffolds for biomedical applications
    Pascual-Gonzalez, Cristina
    Thompson, Cillian
    de la Vega, Jimena
    Biurrun Churruca, Nicolas
    Fernandez-Blazquez, Juan P.
    Lizarralde, Iker
    Herraez-Molinero, Diego
    Gonzalez, Carlos
    LLorca, Javier
    RAPID PROTOTYPING JOURNAL, 2022, 28 (05) : 884 - 894
  • [50] Modelling and optimization of compressive strength of 3D printed PLA scaffolds for biomedical applications
    Gonzalez Gonzalez, Alejandro
    Rivas Santana, Marcelino
    Zambrano Robledo, Patricia de Carmen
    Quiza, Ramon
    MRS ADVANCES, 2022, 7 (35) : 1212 - 1217