Performance of Selected Nonparametric Tests for Discrete Longitudinal Data Under Different Patterns of Missing Data

被引:1
|
作者
Chirwa, T. F. [1 ]
Bogaerts, J. [2 ]
Chirwa, E. D. [1 ]
Kazembe, L. N. [1 ]
机构
[1] Chancellor Coll, Dept Math Sci, Appl Stat & Epidemiol Res Grp, Zomba, Malawi
[2] EORTC, Brussels, Belgium
关键词
Informative; MAR; MCAR; Nonparametric tests; Simulations; Wilcoxon; QUALITY-OF-LIFE; DROPOUTS; CANCER; PROGRAM; TRIALS;
D O I
10.1080/10543400802536248
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Comparison of changes over time of a continuous response variable between treatment groups is often of main interest in clinical trials. When the distributional properties of the continuous response variable are not regular enough, or when the response is discrete, nonparametric techniques have been used. The relative performances of selected repeated measures nonparametric two-sample tests proposed by Wei and Lachin, Koziol, Wei and Johnson, and the adapted Wilcoxon Rank-Sum test are compared through simulations based on quality of life data. The Wilcoxon Rank-Sum test is the most powerful and is not significantly affected by the different patterns of missing data.
引用
收藏
页码:190 / 203
页数:14
相关论文
共 50 条
  • [21] A nonparametric approach to matched pairs with missing data
    Akritas, MG
    Kuha, J
    Osgood, DW
    SOCIOLOGICAL METHODS & RESEARCH, 2002, 30 (03) : 425 - 454
  • [22] Missing Data Imputation of Solar Radiation Data under Different Atmospheric Conditions
    Crespo Turrado, Concepcion
    Meizoso Lopez, Maria del Carmen
    Sanchez Lasheras, Fernando
    Rodriguez Gomez, Benigno Antonio
    Calvo Rolle, Jose Luis
    de Cos Juez, Francisco Javier
    SENSORS, 2014, 14 (11) : 20382 - 20399
  • [23] Bayesian Nonparametric Longitudinal Data Analysis
    Quintana, Fernando A.
    Johnson, Wesley O.
    Waetjen, L. Elaine
    Gold, Ellen B.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2016, 111 (515) : 1168 - 1181
  • [24] Evaluating the Performance of Bayesian Approach for Imputing Missing Data under different Missingness Mechanism
    Sanju, Vinay
    Kumar, Vinay
    Kumari, Pavitra
    SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2024, 86 (02): : 713 - 723
  • [25] Nonparametric regression analysis of longitudinal data
    Staniswalis, JG
    Lee, JJ
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (444) : 1403 - 1418
  • [26] Nonparametric tests of tumor prevalence data
    Sun, JG
    Kalbfleisch, JD
    BIOMETRICS, 1996, 52 (02) : 726 - 731
  • [27] A NONPARAMETRIC VERTICAL MODEL: AN APPLICATION TO DISCRETE TIME COMPETING RISKS DATA WITH MISSING FAILURE CAUSES
    Ndlovu, Bonginkosi D.
    Melesse, Sileshi F.
    Zewotir, Temesgen
    SOUTH AFRICAN STATISTICAL JOURNAL, 2020, 54 (02) : 231 - 241
  • [28] Family-Based Association Tests with Longitudinal Measurements: Handling Missing Data
    Ding, Xiao
    Laird, Nan
    HUMAN HEREDITY, 2009, 68 (02) : 98 - 105
  • [29] Handling Missing Data in the Modeling of Intensive Longitudinal Data
    Ji, Linying
    Chow, Sy-Miin
    Schermerhom, Alice C.
    Jacobson, Nicholas C.
    Cummings, E. Mark
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2018, 25 (05) : 715 - 736
  • [30] Network sampling coverage III: Imputation of missing network data under different network and missing data conditions
    Smith, Jeffrey A.
    Morgan, Jonathan H.
    Moody, James
    SOCIAL NETWORKS, 2022, 68 : 148 - 178