Calcium oxalates, represented by wavellite CaC2O4 center dot H2O and weddellite CaC2O4 center dot 2H(2)O (the most stable forms), are the main components of stones in the genitourinary system, and are also part of dental, gallstones, and other mineral deposits. It is known that modern approaches to the study and modeling of crystallization processes make it possible to analyze the influence of a number of factors (exogenous and endogenous) arising at various levels of organization: from atoms and molecules to macroscopic processes occurring in industrial devices. The process of crystallization, taking into account the variety of acting factors and forms of crystal structures, consists of two main stages: formation of a solid phase nucleus and its growth (formation of a solute crystal). In this work, using modern approaches, the physicochemical and kinetic patterns of crystallization of calcium oxalates under conditions close to physiological are determined. The effect of physiological solution components (organic and inorganic) was studied, the staged mechanism of the solid phase formation was established, and the kinetic parameters of the growth stage were calculated (lgk = 33.1). The inhibitory effect of inorganic additives (Mg2+, Cl-), amino acids (glycine, glutamine, aspartic) and the accelerating effect of hydroxyapatite crystals, seed in the form of calcium oxalate and urea crystals on the crystallization process were revealed.