SEMANTIC SEGMENTATION OF INDOOR POINT CLOUDS USING CONVOLUTIONAL NEURAL NETWORK

被引:14
|
作者
Babacan, K. [1 ]
Chen, L. [1 ]
Sohn, G. [1 ]
机构
[1] York Univ Toronto, Dept Earth & Space Sci & Engn, N York, ON M3J 1P3, Canada
关键词
Indoor Modelling; Semantic Segmentation; Mobile Laser; Point Cloud; Deep Learning; Convolutional Neural Network; 3D RECONSTRUCTION;
D O I
10.5194/isprs-annals-IV-4-W4-101-2017
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
As Building Information Modelling (BIM) thrives, geometry becomes no longer sufficient; an ever increasing variety of semantic information is needed to express an indoor model adequately. On the other hand, for the existing buildings, automatically generating semantically enriched BIM from point cloud data is in its infancy. The previous research to enhance the semantic content rely on frameworks in which some specific rules and/or features that are hand coded by specialists. These methods immanently lack generalization and easily break in different circumstances. On this account, a generalized framework is urgently needed to automatically and accurately generate semantic information. Therefore we propose to employ deep learning techniques for the semantic segmentation of point clouds into meaningful parts. More specifically, we build a volumetric data representation in order to efficiently generate the high number of training samples needed to initiate a convolutional neural network architecture. The feedforward propagation is used in such a way to perform the classification in voxel level for achieving semantic segmentation. The method is tested both for a mobile laser scanner point cloud, and a larger scale synthetically generated data. We also demonstrate a case study, in which our method can be effectively used to leverage the extraction of planar surfaces in challenging cluttered indoor environments.
引用
收藏
页码:101 / 108
页数:8
相关论文
共 50 条
  • [41] MULTI-SOURCE POINT CLOUD SEMANTIC SEGMENTATION USING NEURAL NETWORK
    Montlahuc, Jeremy
    Polette, Arnaud
    Tahan, Antoine
    Pernot, Jean-Philippe
    Rivest, Louis
    XXIV ISPRS CONGRESS: IMAGING TODAY, FORESEEING TOMORROW, COMMISSION III, 2022, 43-B3 : 515 - 522
  • [42] Pruning Points Detection of Sweet Pepper Plants Using 3D Point Clouds and Semantic Segmentation Neural Network
    Giang, Truong Thi Huong
    Ryoo, Young-Jae
    SENSORS, 2023, 23 (08)
  • [43] Semantic Segmentation Method of On-board Lidar Point Cloud Based on Sparse Convolutional Neural Network
    Xia X.
    Wang D.
    Cao J.
    Zhao G.
    Zhang J.
    Qiche Gongcheng/Automotive Engineering, 2022, 44 (01): : 26 - 35
  • [44] Bilevel Convolutional Neural Networks for 3D Semantic Segmentation Using Large-scale LiDAR Point Clouds in Complex Environments
    Jiang T.
    Yang B.
    Zhou Y.
    Zhu R.
    Hu Z.
    Dong Z.
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2020, 45 (12): : 1942 - 1948
  • [45] SFPNet: Sparse Focal Point Network for Semantic Segmentation on General LiDAR Point Clouds
    Wang, Yanbo
    Zhao, Wentao
    Cao, Chuan
    Deng, Tianchen
    Wang, Jingchuan
    Chen, Weidong
    COMPUTER VISION - ECCV 2024, PT V, 2025, 15063 : 403 - 421
  • [46] A Convolutional Neural Network-Based 3D Semantic Labeling Method for ALS Point Clouds
    Yang, Zhishuang
    Jiang, Wanshou
    Xu, Bo
    Zhu, Quansheng
    Jiang, San
    Huang, Wei
    REMOTE SENSING, 2017, 9 (09)
  • [47] A point-based deep learning network for semantic segmentation of MLS point clouds
    Han, Xu
    Dong, Zhen
    Yang, Bisheng
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 175 : 199 - 214
  • [48] Adaptive local neighborhood search and dual attention convolution network for complex semantic segmentation towards indoor point clouds
    Ai, Da
    Qin, Siyu
    Nie, Zihe
    Wang, Dianwei
    Yuan, Hui
    Liu, Ying
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 269
  • [49] Multi-Scale Convolutional Features Network for Semantic Segmentation in Indoor Scenes
    Wang, Yanran
    Chen, Qingliang
    Chen, Shilang
    Wu, Junjun
    IEEE ACCESS, 2020, 8 : 89575 - 89583
  • [50] Deep learning network for indoor point cloud semantic segmentation with transferability
    Li, Luping
    Chen, Jian
    Su, Xing
    Han, Haoying
    Fan, Chao
    AUTOMATION IN CONSTRUCTION, 2024, 168