COMBINING GRADIENT-BASED OPTIMIZATION WITH STOCHASTIC SEARCH

被引:0
|
作者
Zhou, Enlu [1 ]
Hu, Jiaqiao [2 ]
机构
[1] Univ Illinois, Dept Ind & Enterprise Syst Engn, Urbana, IL 61801 USA
[2] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We propose a stochastic search algorithm for solving non-differentiable optimization problems. At each iteration, the algorithm searches the solution space by generating a population of candidate solutions from a parameterized sampling distribution. The basic idea is to convert the original optimization problem into a differentiable problem in terms of the parameters of the sampling distribution, and then use a quasi-Newton-like method on the reformulated problem to find improved sampling distributions. The algorithm combines the strength of stochastic search from considering a population of candidate solutions to explore the solution space with the rapid convergence behavior of gradient methods by exploiting local differentiable structures. We provide numerical examples to illustrate its performance.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] A gradient-based direct aperture optimization
    Yang, Jie
    Zhang, Pengcheng
    Zhang, Liyuan
    Gui, Zhiguo
    Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2018, 35 (03): : 358 - 367
  • [32] Trivializations for Gradient-Based Optimization on Manifolds
    Lezcano-Casado, Mario
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [33] Catalyst for Gradient-based Nonconvex Optimization
    Paquette, Courtney
    Lin, Hongzhou
    Drusvyatskiy, Dmitriy
    Mairal, Julien
    Harchaoui, Zaid
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 84, 2018, 84
  • [34] Gradient-based stochastic estimation of the density matrix
    Wang, Zhentao
    Chern, Gia-Wei
    Batista, Cristian D.
    Barros, Kipton
    JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (09):
  • [35] Orthogonal wavelets and stochastic gradient-based algorithms
    Attallah, S
    Najim, M
    PROCEEDINGS OF THE IEEE-SP INTERNATIONAL SYMPOSIUM ON TIME-FREQUENCY AND TIME-SCALE ANALYSIS, 1996, : 405 - 408
  • [36] A Gradient-Based Optimization Algorithm for LASSO
    Kim, Jinseog
    Kim, Yuwon
    Kim, Yongdai
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2008, 17 (04) : 994 - 1009
  • [37] Gradient-Based Multiobjective Optimization with Uncertainties
    Peitz, Sebastian
    Dellnitz, Michael
    NEO 2016: RESULTS OF THE NUMERICAL AND EVOLUTIONARY OPTIMIZATION WORKSHOP NEO 2016 AND THE NEO CITIES 2016 WORKSHOP, 2018, 731 : 159 - 182
  • [38] Sparse Gradient-Based Direct Policy Search
    Sokolovska, Nataliya
    NEURAL INFORMATION PROCESSING, ICONIP 2012, PT IV, 2012, 7666 : 212 - 221
  • [39] On gradient-based search for multivariable system estimates
    Wills, Adrian
    Ninness, Brett
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2008, 53 (01) : 298 - 306
  • [40] AUTOMATIC AND SIMULTANEOUS ADJUSTMENT OF LEARNING RATE AND MOMENTUM FOR STOCHASTIC GRADIENT-BASED OPTIMIZATION METHODS
    Lancewicki, Tomer
    Kopru, Selcuk
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 3127 - 3131