Estimation of finite population kurtosis under two-phase sampling for nonresponse

被引:1
|
作者
Gamrot, Wojciech [1 ]
机构
[1] Univ Econ Katowice, PL-40226 Katowice, Poland
关键词
Estimation; Kurtosis; Two-phase sampling; Non-response; RANDOMIZED-RESPONSE SURVEYS; MISSING DATA;
D O I
10.1007/s00362-011-0392-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper an estimator of finite population kurtosis computed under the two-phase sampling for nonresponse is proposed. The formulas characterizing its asymptotic properties are derived using Taylor linearization technique for the general situation of arbitrary sampling designs in both phases and stochastic nonresponse represented by arbitrary response distribution. An important special case of simple random sampling without replacement and deterministic nonresponse is also considered.
引用
收藏
页码:887 / 894
页数:8
相关论文
共 50 条
  • [31] Robust Inference in Two-phase Sampling Designs with Application to Unit Nonresponse
    Favre-Martinoz, Cyril
    Haziza, David
    Beaumont, Jean-Francois
    SCANDINAVIAN JOURNAL OF STATISTICS, 2016, 43 (04) : 1019 - 1034
  • [32] Jackknife variance estimation under two-phase sampling: An empirical investigation
    Stukel, DM
    Kott, PS
    AMERICAN STATISTICAL ASSOCIATION - 1996 PROCEEDINGS OF THE SECTION ON SURVEY RESEARCH METHODS, VOLS I AND II, 1996, : 209 - 214
  • [33] On the use of imputation methods for missing data in estimation of population mean under two-phase sampling design
    Singh, G. N.
    Suman, S.
    Kadilar, Cem
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2018, 47 (06): : 1715 - 1729
  • [34] Estimation of Population Mean Using Imputation Methods for Missing Data Under Two-Phase Sampling Design
    Singh, G. N.
    Suman, S.
    JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2019, 13 (01)
  • [35] Estimation of Population Mean of a Sensitive Variable Using Randomized Response Technique Under Two-Phase Sampling
    K. K. Tiwari
    S. Bhougal
    S. Kumar
    Lobachevskii Journal of Mathematics, 2022, 43 : 3400 - 3406
  • [36] Estimation of Population Mean Using Imputation Methods for Missing Data Under Two-Phase Sampling Design
    G. N. Singh
    S. Suman
    Journal of Statistical Theory and Practice, 2019, 13
  • [37] Estimation of Population Mean of a Sensitive Variable Using Randomized Response Technique Under Two-Phase Sampling
    Tiwari, K. K.
    Bhougal, S.
    Kumar, S.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (11) : 3400 - 3406
  • [38] Generalized Exponential Estimators for Population Variance Under Two-Phase Sampling
    Sanaullah A.
    Hanif M.
    Asghar A.
    International Journal of Applied and Computational Mathematics, 2016, 2 (1) : 75 - 84
  • [39] A two-phase sampling survey for nonresponse and its paradata to correct nonresponse bias in a health surveillance survey
    Santin, G.
    Benezet, L.
    Geoffroy-Perez, B.
    Bouyer, J.
    Gueguen, A.
    REVUE D EPIDEMIOLOGIE ET DE SANTE PUBLIQUE, 2017, 65 (01): : 71 - 79
  • [40] New class of exponential estimators for finite population mean in two-phase sampling
    Zaman, Tolga
    Kadilar, Cem
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (04) : 874 - 889