Effectively Propositional Interpolants

被引:5
|
作者
Drews, Samuel [1 ]
Albarghouthi, Aws [1 ]
机构
[1] Univ Wisconsin, Madison, WI 53706 USA
关键词
ENCODINGS;
D O I
10.1007/978-3-319-41540-6_12
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a novel interpolation algorithm for effectively propositional logic (EPR), a decidable fragment of first-order logic that enjoys a small-model property. EPR is a powerful fragment of quantified formulas that has been used to model and verify a range of programs, including heap-manipulating programs and distributed protocols. Our interpolation technique samples finite models from two sides of the interpolation problem and generalizes them to learn a quantified interpolant. Our results demonstrate our technique's ability to compute universally-quantified, existentially-quantified, as well as alternation-free interpolants and inductive invariants, thus improving the state of the art.
引用
收藏
页码:210 / 229
页数:20
相关论文
共 50 条
  • [21] Spatial Interpolants
    Albargouthi, Aws
    Berdine, Josh
    Cook, Byron
    Kincaid, Zachary
    PROGRAMMING LANGUAGES AND SYSTEMS, 2015, 9032 : 634 - 660
  • [22] Lazy abstraction with interpolants
    McMillan, Kenneth L.
    COMPUTER AIDED VERIFICATION, PROCEEDINGS, 2006, 4144 : 123 - 136
  • [23] Propositional or non-propositional attitudes?
    Crawford, Sean
    PHILOSOPHICAL STUDIES, 2014, 168 (01) : 179 - 210
  • [24] Convergence of rational interpolants
    Stahl, H
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY, DECEMBER 1996, SUPPLEMENT: NUMERICAL ANALYSIS - A NUMERICAL ANALYSIS CONFERENCE IN HONOUR OF JEAN MEINGUET, 1996, : 11 - 32
  • [25] Note on Rational Interpolants
    Tan Jieqing (Hefei University of Technology)
    工科数学, 1993, (03) : 59 - 64
  • [26] On Interpolants and Variable Assignments
    Jancik, Pavel
    Kofron, Jan
    Rollini, Simone Fulvio
    Sharygina, Natasha
    2014 FORMAL METHODS IN COMPUTER-AIDED DESIGN (FMCAD), 2014, : 123 - 130
  • [27] Propositional or non-propositional attitudes?
    Sean Crawford
    Philosophical Studies, 2014, 168 : 179 - 210
  • [28] Decomposing Farkas Interpolants
    Blicha, Martin
    Hyvarinen, Antti E. J.
    Kofron, Jan
    Sharygina, Natasha
    TOOLS AND ALGORITHMS FOR THE CONSTRUCTION AND ANALYSIS OF SYSTEMS, PT I, 2019, 11427 : 3 - 20
  • [29] Blended hermite interpolants
    Gfrerrer, A
    Röschel, O
    COMPUTER AIDED GEOMETRIC DESIGN, 2001, 18 (09) : 865 - 873
  • [30] Biorthogonality of the Lagrange interpolants
    Zhedanov, A
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 172 (01) : 1 - 6