Gradient-Based Adaptive Stochastic Search for Simulation Optimization Over Continuous Space

被引:6
|
作者
Zhou, Enlu [1 ]
Bhatnagar, Shalabh [2 ]
机构
[1] Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USA
[2] Indian Inst Sci, Dept Comp Sci & Automat, Bangalore 560012, Karnataka, India
基金
美国国家科学基金会;
关键词
simulation optimization; model-based optimization; two-timescale stochastic approximation; APPROXIMATION;
D O I
10.1287/ijoc.2017.0771
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We extend the idea of model-based algorithms for deterministic optimization to simulation optimization over continuous space. Model-based algorithms iteratively generate a population of candidate solutions from a sampling distribution and use the performance of the candidate solutions to update the sampling distribution. By viewing the original simulation optimization problem as another optimization problem over the parameter space of the sampling distribution, we propose to use a direct gradient search on the parameter space to update the sampling distribution. To improve the computational efficiency, we further develop a two-timescale updating scheme that updates the parameter on a slow timescale and estimates the quantities involved in the parameter updating on the fast timescale. We analyze the convergence properties of our algorithms through techniques from stochastic approximation, and demonstrate the good empirical performance by comparing with two state-of-the-art model-based simulation optimization methods.
引用
收藏
页码:154 / 167
页数:14
相关论文
共 50 条
  • [41] A Globally Convergent Stochastic Pairwise Conjugate Gradient-Based Algorithm for Adaptive Filtering
    Ahmad, Noor Atinah
    IEEE SIGNAL PROCESSING LETTERS, 2008, 15 (914-917) : 914 - 917
  • [42] On Gradient-Based Learning in Continuous Games
    Mazumdar, Eric
    Ratliff, Lillian J.
    Sastry, S. Shankar
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2020, 2 (01): : 103 - 131
  • [43] Reliability-Based Design Optimization of Uncertain Stochastic Systems: Gradient-Based Scheme
    Jensen, H. A.
    Kusanovic, D. S.
    Valdebenito, M. A.
    Schueller, G. I.
    JOURNAL OF ENGINEERING MECHANICS, 2012, 138 (01) : 60 - 70
  • [44] Gradient-based adaptive importance samplers
    Elvira, Victor
    Chouzenoux, Emilie
    Akyildiz, Omer Deniz
    Martino, Luca
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2023, 360 (13): : 9490 - 9514
  • [45] Efficient Gradient-Based Tolerance Optimization Using Monte Carlo Simulation
    Bowman, R. Alan
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2009, 131 (03): : 0310051 - 0310058
  • [46] Compensation for gradient-based adaptive observers
    Lilly, JH
    PROCEEDINGS OF THE TWENTY-EIGHTH SOUTHEASTERN SYMPOSIUM ON SYSTEM THEORY, 1996, : 374 - 378
  • [47] SIMULATION OPTIMIZATION: A TUTORIAL OVERVIEW AND RECENT DEVELOPMENTS IN GRADIENT-BASED METHODS
    Chau, Marie
    Fu, Michael C.
    Qu, Huashuai
    Ryzhov, Ilya O.
    PROCEEDINGS OF THE 2014 WINTER SIMULATION CONFERENCE (WSC), 2014, : 21 - 35
  • [48] Single-stage gradient-based stellarator coil design: stochastic optimization
    Wechsung, Florian
    Giuliani, Andrew
    Landreman, Matt
    Cerfon, Antoine
    Stadler, Georg
    NUCLEAR FUSION, 2022, 62 (07)
  • [49] Spherical search with epsilon constraint and gradient-based repair framework for constrained optimization
    Yang, Zhuji
    Kumar, Abhishek
    Mallipeddi, Rammohan
    Lee, Dong-Gyu
    SWARM AND EVOLUTIONARY COMPUTATION, 2023, 82
  • [50] Global Optimization by Equilibrium-Point Search of Gradient-Based Dynamical System
    Masuda, Kazuaki
    Kurihara, Kenzo
    ELECTRONICS AND COMMUNICATIONS IN JAPAN, 2008, 91 (01) : 19 - 31