INVARIANTS, TORSION INDICES AND ORIENTED COHOMOLOGY OF COMPLETE FLAGS

被引:0
|
作者
Calmes, Baptiste [1 ]
Petrov, Viktor [2 ]
Zainoulline, Kirill [3 ]
机构
[1] Univ Artois, Fac Sci Jean Perrin, Lab Math Lens, F-62307 Lens, France
[2] VA Steklov Math Inst, St Petersburg 191023, Russia
[3] Univ Ottawa, Dept Math & Stat, Ottawa, ON KIN 6N5, Canada
基金
加拿大自然科学与工程研究理事会; 英国工程与自然科学研究理事会;
关键词
SCHUBERT CALCULUS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a split semisimple linear algebraic group over a field and let T be a split maximal torus of G. Let h be an oriented cohomology (algebraic cobordism, connective K-theory, Chow groups, Grothendieck's K-0, etc.) with formal group law F. We construct a ring from F and the characters of T, that we call a formal group ring, and we define a characteristic ring morphism c from this formal group ring to h (G/B) where G/B is the variety of Borel subgroups of G. Our main result says that when the torsion index of G is inverted, c is surjective and its kernel is generated by elements invariant under the Weyl group of G. As an application, we provide an algorithm to compute the ring structure of h (G/B) and to describe the classes of desingularized Schubert varieties and their products.
引用
收藏
页码:405 / 448
页数:44
相关论文
共 50 条
  • [31] Secondary Cohomology and k-invariants
    Staic, Mihai D.
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2012, 19 (03) : 561 - 572
  • [32] On λ-invariants of number fields and etale cohomology
    Kolster, Manfred
    Movahhedi, Abbas
    JOURNAL OF K-THEORY, 2013, 12 (01) : 167 - 181
  • [33] COHOMOLOGY AND HIGHER DIMENSIONAL BAER INVARIANTS
    CEGARRA, AM
    BULLEJOS, M
    JOURNAL OF ALGEBRA, 1990, 132 (02) : 321 - 339
  • [34] Baer Invariants and Cohomology of Precrossed Modules
    Daniel Arias
    Manuel Ladra
    Applied Categorical Structures, 2014, 22 : 289 - 304
  • [35] Equivalence of higher torsion invariants
    Badzioch, Bernard
    Dorabiala, Wojciech
    Klein, John R.
    Williams, Bruce
    ADVANCES IN MATHEMATICS, 2011, 226 (03) : 2192 - 2232
  • [36] Torsion Type Invariants of Singularities
    Huijun Fan
    Hao Fang
    Vietnam Journal of Mathematics, 2021, 49 : 381 - 432
  • [37] L(2)-TORSION INVARIANTS
    CAREY, AL
    MATHAI, V
    JOURNAL OF FUNCTIONAL ANALYSIS, 1992, 110 (02) : 377 - 409
  • [38] Torsion Type Invariants of Singularities
    Fan, Huijun
    Fang, Hao
    VIETNAM JOURNAL OF MATHEMATICS, 2021, 49 (02) : 381 - 432
  • [39] TORSION INVARIANTS OF COMPLEXES OF GROUPS
    Okun, Boris
    Schreve, Kevin
    DUKE MATHEMATICAL JOURNAL, 2024, 173 (02) : 391 - 418
  • [40] Cohomology of oriented algebras
    Koam, Ali N. A.
    Pirashvili, Teimuraz
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (07) : 2947 - 2963