Effect of Amino Acid Additives on the Positive Electrolyte of Vanadium Redox Flow Batteries

被引:32
|
作者
Lei, Ying [1 ]
Liu, Su-qin [1 ]
Gao, Chao [1 ]
Liang, Xin-xing [1 ]
He, Zhang-xing [1 ]
Deng, Yun-hua [1 ]
He, Zhen [1 ]
机构
[1] Cent S Univ, Coll Chem & Chem Engn, Minist Educ, Key Lab Resources Chem Nonferrous Met, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
ORGANIC ADDITIVES; HALF-CELL; STORAGE;
D O I
10.1149/2.006306jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Two amino acids (L-glutamate and L-arginine) have been used respectively as an additive in a positive electrolyte containing 2.0 M VOSO4 and 3.0 M H2SO4 for all-vanadium redox flow batteries. The effects of each additive on the thermal stability and electrochemical properties of the positive electrolyte are investigated. The thermal stability tests show that the addition of L-glutamate to the positive electrolyte could delay the initiation of precipitation in the electrolyte for 12 hours at 40 degrees C and 5 hours at 50 degrees C. Cyclic voltammetry results suggest that the electrochemical reversibility of V(IV)/V(V) redox couple in the electrolyte has been improved by the addition of either L-glutamate or L-arginine. The diffusion coefficient of V(IV) has been increased from 0.47 similar to 1.30 x 10(-6) cm(2)/s in the pristine electrolyte to 0.54 similar to 1.50 x 10(-6) cm(2)/s in the electrolyte with L-glutamate and 0.70 similar to 1.93 x 10(-6) cm(2)/s in the electrolyte with L-arginine. The discharge capacity loss (312.4 mAh) of the cell with L-glutamate in the positive electrolyte is smaller compared to that (503.8 mAh) of the cell with the pristine positive electrolyte. The columbic efficiency and energy efficiency of the cell are also increased by 1.7% and 2.0%, respectively, by the addition of L-glutamate in the positive electrolyte of the cell. (C) 2013 The Electrochemical Society. [DOI: 10.1149/2.006306jes] All rights reserved.
引用
收藏
页码:A722 / A727
页数:6
相关论文
共 50 条
  • [31] Novel electrolyte rebalancing method for vanadium redox flow batteries
    Poli, Nicola
    Schaffer, Michael
    Trovo, Andrea
    Noack, Jens
    Guarnieri, Massimo
    Fischer, Peter
    CHEMICAL ENGINEERING JOURNAL, 2021, 405 (405)
  • [32] Electrolyte engineering for efficient and stable vanadium redox flow batteries
    Yu, Zihan
    Jia, Xiongjie
    Cai, Yuhao
    Su, Ruihang
    Zhu, Qiang
    Zhao, Tianshou
    Jiang, Haoran
    ENERGY STORAGE MATERIALS, 2024, 69
  • [33] Influence of organic additives on electrochemical properties of the positive electrolyte for all-vanadium redox flow battery
    Wu, Xiaojuan
    Liu, Suqin
    Wang, Nanfang
    Peng, Sui
    He, Zhangxin
    ELECTROCHIMICA ACTA, 2012, 78 : 475 - 482
  • [34] Preparation of Electrolyte for Vanadium Redox-Flow Batteries Based on Vanadium Pentoxide
    Martin, Jan
    Schafner, Katharina
    Turek, Thomas
    ENERGY TECHNOLOGY, 2020, 8 (09)
  • [35] Influence of Metal Impurities or Additives in the Electrolyte of a Vanadium Redox Flow Battery
    Park, Jong Ho
    Park, Jung Jin
    Lee, Hyun Ju
    Mi, Byung Seok
    Yang, Jung Hoon
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (07) : A1263 - A1268
  • [36] Rapid preparation of desirable vanadium electrolyte using ascorbic acid as a reducing agent in vanadium redox flow batteries
    Park, Gyunho
    Yim, Yejin
    Hyun, Kyuhwan
    Kwon, Yongchai
    JOURNAL OF POWER SOURCES, 2024, 589
  • [37] Output feedback control of electrolyte flow rate for Vanadium Redox Flow Batteries
    Pugach, M.
    Parsegov, S.
    Gryazina, E.
    Bischi, A.
    JOURNAL OF POWER SOURCES, 2020, 455
  • [38] Dynamic control strategy for the electrolyte flow rate of vanadium redox flow batteries
    Wang, Tao
    Fu, Jiahui
    Zheng, Menglian
    Yu, Zitao
    APPLIED ENERGY, 2018, 227 : 613 - 623
  • [39] Study on stabilities and electrochemical behavior of V(V) electrolyte with acid additives for vanadium redox flow battery
    Wang, Gang
    Chen, Jinwei
    Wang, Xueqin
    Tian, Jing
    Kang, Hong
    Zhu, Xuejing
    Zhang, Yu
    Liu, Xiaojiang
    Wang, Ruilin
    JOURNAL OF ENERGY CHEMISTRY, 2014, 23 (01) : 73 - 81
  • [40] Polymer Electrolyte Membranes for Vanadium Redox Flow Batteries: Fundamentals and Applications
    Shi, Xingyi
    Esan, Oladapo Christopher
    Huo, Xiaoyu
    Ma, Yining
    Pan, Zhefei
    An, Liang
    Zhao, T. S.
    PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2021, 85