Some New Existence, Uniqueness and Convergence Results for Fractional Volterra-Fredholm Integro-Differential Equations

被引:24
|
作者
Hamoud, Ahmed A. [1 ,2 ]
Ghadle, Kirtiwant P. [1 ]
机构
[1] Dr Babasaheb Ambedkar Marathwada Univ, Dept Math, Aurangabad 431004, Maharashtra, India
[2] Taiz Univ, Dept Math, Taizi, Yemen
来源
关键词
Modified Adomian Decomposition Method; Modified Variational Iteration Method; Caputo Fractional Volterra-Fredholm Integro-Differential Equation;
D O I
10.22055/jacm.2018.25397.1259
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper demonstrates a study on some significant latest innovations in the approximated techniques to find the approximate solutions of Caputo fractional Volterra-Fredholm integro-differential equations. To this aim, the study uses the modified Adomian decomposition method (MADM) and the modified variational iteration method (MVIM). A wider applicability of these techniques are based on their reliability and reduction in the size of the computational work. This study provides an analytical approximate to determine the behavior of the solution. It proves the existence and uniqueness results and convergence of the solution. In addition, it brings an example to examine the validity and applicability of the proposed techniques.
引用
收藏
页码:58 / 69
页数:12
相关论文
共 50 条
  • [21] Existence and uniqueness of solutions for nonlinear Volterra-Fredholm integro-differential equation of fractional order with boundary conditions
    Laadjal, Zaid
    Ma, Qing-Hua
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (10) : 8215 - 8227
  • [22] On the Hilfer Fractional Volterra-Fredholm Integro Differential Equations
    Ivaz, Karim
    Alasadi, Ismael
    Hamoud, Ahmed
    IAENG International Journal of Applied Mathematics, 2022, 52 (02)
  • [23] Solving Fractional Volterra-Fredholm Integro-Differential Equations via A** Iteration Method
    Ofem, Austine Efut
    Hussain, Aftab
    Joseph, Oboyi
    Udo, Mfon Okon
    Ishtiaq, Umar
    Al Sulami, Hamed
    Chikwe, Chukwuka Fernando
    AXIOMS, 2022, 11 (09)
  • [24] Application of artificial neural networks for existence and controllability in impulsive fractional Volterra-Fredholm integro-differential equations
    Raghavendran, Prabakaran
    Gunasekar, Tharmalingam
    Gochhait, Saikat
    APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING, 2024, 32 (01):
  • [25] PERIODIC SOLUTIONS FOR NONLINEAR VOLTERRA-FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS WITH ψ-CAPUTO FRACTIONAL DERIVATIVE
    Foukrach, Djamal
    Bouriah, Soufyane
    Benchohra, Mouffak
    Henderson, Johnny
    MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2022, 86 : 51 - 68
  • [26] Numerical solution of nonlinear Volterra-Fredholm integro-differential equations
    Darania, P.
    Ivaz, K.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (09) : 2197 - 2209
  • [27] ON THE PERIODIC SOLUTIONS FOR NONLINEAR VOLTERRA-FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS WITH ψ-HILFER FRACTIONAL DERIVATIVE
    Bouriah, Soufyane
    Foukrach, Djamal
    Benchohra, Mouffak
    Zhou, Yong
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2022, 14 (03): : 447 - 467
  • [28] Theoretical Analysis for a System of Nonlinear φ-Hilfer Fractional Volterra-Fredholm Integro-differential Equations
    Hamoud, Ahmed A.
    Mohammed, Nedal M.
    Shah, Rasool
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2023, 16 (02): : 216 - 229
  • [29] Theoretical and Numerical Studies of Fractional Volterra-Fredholm Integro-Differential Equations in Banach Space
    Alsa'di, K.
    Long, N. M. A. Nik
    Eshkuvatov, Z. K.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2024, 18 (03): : 469 - 489
  • [30] EXISTENCE AND UNIQUENESS RESULTS FOR CAPUTO FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS
    Hamoud, Ahmed A.
    Abdo, Mohammed S.
    Ghadle, Kirtiwant P.
    JOURNAL OF THE KOREAN SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 2018, 22 (03) : 163 - 177