Backtracking for More Efficient Large Scale Dynamic Programming

被引:1
|
作者
Tripp, Charles [1 ]
Shachter, Ross [2 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Management Sci & Engn, Stanford, CA 94305 USA
关键词
dynamic programming; reinforcement learning; Q-Learning; experience replay; backtracking;
D O I
10.1109/ICMLA.2012.63
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Reinforcement learning algorithms are widely used to generate policies for complex Markov decision processes. We introduce backtracking, a modification to reinforcement learning algorithms that can significantly improve their performance, particularly for off-line policy generation. Backtracking waits to perform update calculations until the successor's value has been updated, allowing immediate reuse of update calculations. We demonstrate the effectiveness of backtracking on two benchmark processes using both Q-learning and real-time dynamic programming.
引用
收藏
页码:338 / 343
页数:6
相关论文
共 50 条
  • [11] Optimization of a large-scale water reservoir network by stochastic dynamic programming with efficient state space discretization
    Cervellera, C
    Chen, VCP
    Wen, AH
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2006, 171 (03) : 1139 - 1151
  • [12] Parallel, scalable, memory-efficient backtracking for combinatorial modeling of large-scale biological systems
    Park, Byung-Hoon
    Schmidt, Matthew
    Thomas, Kevin
    Karpinets, Tatiana
    Samatova, Nagiza F.
    2008 IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL & DISTRIBUTED PROCESSING, VOLS 1-8, 2008, : 536 - +
  • [13] Efficient and verifiable outsourcing computation of large-scale nonlinear programming
    Mohammed, Nedal M.
    AL-Seadi, Ali N.
    Lomte, Santosh S.
    Rokade, Poonam M.
    Hamoud, Ahmed A.
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2020, 21 (04): : 335 - 343
  • [14] An Efficient Approach to Solve the Large-Scale Semidefinite Programming Problems
    Zheng, Yongbin
    Yan, Yuzhuang
    Liu, Sheng
    Huang, Xinsheng
    Xu, Wanying
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2012, 2012
  • [15] Efficient large-scale configuration via integer linear programming
    Feinerer, Ingo
    AI EDAM-ARTIFICIAL INTELLIGENCE FOR ENGINEERING DESIGN ANALYSIS AND MANUFACTURING, 2013, 27 (01): : 37 - 49
  • [16] Approximate Dynamic Programming for Large-scale Unit Commitment Problems
    Long, Danli
    10TH ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC 2018), 2018, : 353 - 362
  • [17] Dynamic programming neural network for large-scale optimization problems
    Hou, Zengguang
    Wu, Cangpu
    Zidonghua Xuebao/Acta Automatica Sinica, 1999, 25 (01): : 45 - 51
  • [18] A Dynamic Programming Framework for Large-Scale Online Clustering on Graphs
    Li, Yantao
    Zhao, Xiang
    Qu, Zehui
    NEURAL PROCESSING LETTERS, 2020, 52 (02) : 1613 - 1629
  • [19] A Dynamic Programming Framework for Large-Scale Online Clustering on Graphs
    Yantao Li
    Xiang Zhao
    Zehui Qu
    Neural Processing Letters, 2020, 52 : 1613 - 1629
  • [20] Dynamic Backtracking
    Ginsberg, Matthew L.
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 1993, 1 : 25 - 46