Online Egomotion Estimation of RGB-D Sensors using Spherical Harmonics

被引:0
|
作者
Osteen, Philip R. [1 ]
Owens, Jason L. [1 ]
Kessens, Chad C. [1 ]
机构
[1] Motile Robot Inc, Joppa, MD 21085 USA
关键词
IMAGES;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a technique to estimate the egomotion of an RGB-D sensor based on rotations of functions defined on the unit sphere. In contrast to traditional approaches, our technique is not based on image features and does not require correspondences to be generated between frames of data. Instead, consecutive functions are correlated using spherical harmonic analysis. An Extended Gaussian Image (EGI), created from the local normal estimates of a point cloud, defines each function. Correlations are efficiently computed using Fourier transformations, resulting in a 3 Degree of Freedom (3-DoF) rotation estimate. An Iterative Closest Point (ICP) process then refines the initial rotation estimate and adds a translational component, yielding a full 6-DoF egomotion estimate. The focus of this work is to investigate the merits of using spherical harmonic analysis for egomotion estimation by comparison with alternative 6-DoF methods. We compare the performance of the proposed technique with that of stand-alone ICP and image feature based methods. As with other egomotion techniques, estimation errors accumulate and degrade results, necessitating correction mechanisms for robust localization. For this report, however, we use the raw estimates; no filtering or smoothing processes are applied. In-house and external benchmark data sets are analyzed for both runtime and accuracy. Results show that the algorithm is competitive in terms of both accuracy and runtime, and future work will aim to combine the various techniques into a more robust egomotion estimation framework.
引用
收藏
页码:1679 / 1684
页数:6
相关论文
共 50 条
  • [21] An Online Implementation of Robust RGB-D SLAM
    Athari, M. A.
    Taghirad, H. D.
    2014 SECOND RSI/ISM INTERNATIONAL CONFERENCE ON ROBOTICS AND MECHATRONICS (ICROM), 2014, : 316 - 321
  • [23] Online semantic mapping of logistic environments using RGB-D cameras
    Himstedt, Marian
    Maehle, Erik
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2017, 14 (04): : 1 - 13
  • [24] Online Depth Calibration for RGB-D Cameras using Visual SLAM
    Quenzel, Jan
    Rosu, Radu Alexandru
    Houben, Sebastian
    Behnke, Sven
    2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 2227 - 2234
  • [25] Comparison of RGB-D sensors for 3D reconstruction
    da Silva Neto, Jose Gomes
    da Lima Silva, Pedro Jorge
    Figueredo, Filipe
    Xavier Natario Teixeira, Joao Marcelo
    Teichrieb, Veronica
    2020 22ND SYMPOSIUM ON VIRTUAL AND AUGMENTED REALITY (SVR 2020), 2020, : 252 - 261
  • [26] EFFICIENT GENERATION OF 3D SURFEL MAPS USING RGB-D SENSORS
    Wilkowski, Artur
    Kornuta, Tomasz
    Stefanczyk, Maciej
    Kasprzak, Wlodzimierz
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2016, 26 (01) : 99 - 122
  • [27] 6D Visual SLAM for RGB-D Sensors
    Endres, Felix
    Hess, Juergen
    Engelhard, Nikolas
    Sturm, Juergen
    Burgard, Wolfram
    AT-AUTOMATISIERUNGSTECHNIK, 2012, 60 (05) : 270 - 278
  • [28] Editorial RGB-D Sensors and 3D Reconstruction
    Lv, Zhihan
    Mauri, Jaime Lloret
    Song, Houbing
    IEEE SENSORS JOURNAL, 2020, 20 (20) : 11751 - 11752
  • [29] Robust Odometry Estimation for RGB-D Cameras
    Kerl, Christian
    Sturm, Juergen
    Cremers, Daniel
    2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2013, : 3748 - 3754
  • [30] Kinematic Structures Estimation on the RGB-D Images
    Staszak, Rafal
    Molska, Milena
    Mlodzikowski, Kamil
    Ataman, Justyna
    Belter, Dominik
    2020 25TH IEEE INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2020, : 675 - 681