Enhanced NO2 gas sensing of a single-layer MoS2 by photogating and piezo-phototronic effects

被引:98
|
作者
Guo, Junmeng [1 ,2 ]
Wen, Rongmei [1 ,2 ]
Zhai, Junyi [1 ,2 ,3 ]
Wang, Zhong Lin [1 ,2 ,4 ]
机构
[1] Chinese Acad Sci, CAS Ctr Excellence Nanosci, Beijing Inst Nanoenergy & Nanosyst, Beijing 100083, Peoples R China
[2] Univ Chinese Acad Sci, Sch Nanosci & Technol, Beijing 100049, Peoples R China
[3] Guangxi Univ, Ctr Nanoenergy Res, Sch Phys Sci & Technol, Nanning 530004, Peoples R China
[4] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
基金
中国国家自然科学基金;
关键词
Ultrahigh sensitivity; Flexible NO2 sensor; Single-layer MoS2; Photogating effect; Piezo-phototronic effect; FAST-RESPONSE; GRAPHENE; PERFORMANCE; SENSORS; PIEZOELECTRICITY; PHOTORESPONSE; PHOTODETECTOR; FABRICATION; TRANSISTOR;
D O I
10.1016/j.scib.2018.12.009
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
NO2 sensors with ultrahigh sensitivity are demanded for future electronic sensing systems. However, traditional sensors are considerably limited by the relative low sensitivity, high cost and complicated process. Here, we report a simply and reliable flexible NO2 sensor based on single-layer MoS2. The flexible sensor exhibits high sensitivity to NO2 gas due to ultra-large specific surface area and the nature of two-dimensional (2D) semiconductor. When the NO2 is 400 ppb (parts per billion), compared with the dark and strain-free conditions, the sensitivity of the single-layer sensor is enhanced to 671% with a 625 nm red light-emitting diode (LED) illumination of 4 mW/cm(2) power under 0.67% tensile strain. More important, the response time is dramatically reduced to similar to 16 s and it only needs similar to 65 s to complete 90% recovery. A theoretical model is proposed to discuss the microscopic mechanisms. We find that the remarkable sensing characteristics are the result of coupling among piezoelectricity, photoelectricity and adsorption-desorption induced charges transfer in the single-layer MoS2 Schottky junction based device. Our work opens up the way to further enhancements in the sensitivity of gas sensor based on single-layer MoS2 by introducing photogating and piezo-phototronic effects in mesoscopic systems. (C) 2018 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
引用
收藏
页码:128 / 135
页数:8
相关论文
共 50 条
  • [41] Phonons in single-layer and few-layer MoS2 and WS2
    Molina-Sanchez, A.
    Wirtz, L.
    PHYSICAL REVIEW B, 2011, 84 (15)
  • [42] Orientation Dependent Thermal Conductance in Single-Layer MoS2
    Jiang, Jin-Wu
    Zhuang, Xiaoying
    Rabczuk, Timon
    SCIENTIFIC REPORTS, 2013, 3
  • [43] The buckling of single-layer MoS2 under uniaxial compression
    Jiang, Jin Wu
    NANOTECHNOLOGY, 2014, 25 (35)
  • [44] Thermal Modulation of Photoluminescence from Single-Layer MoS2
    Ryu, Yejin
    Park, Min Kyu
    Ryu, Sunmin
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2014, 35 (10) : 3077 - 3080
  • [45] Electron-phonon coupling in single-layer MoS2
    Mahatha, Sanjoy K.
    Ngankeu, Arlette S.
    Hinsche, Nicki Frank
    Mertig, Ingrid
    Guilloy, Kevin
    Matzen, Peter L.
    Bianchi, Marco
    Sanders, Charlotte E.
    Miwa, Jill A.
    Bana, Harsh
    Travaglia, Elisabetta
    Lacovig, Paolo
    Bignardi, Luca
    Lizzit, Daniel
    Larciprete, Rosanna
    Baraldi, Alessandro
    Lizzit, Silvan
    Hofmann, Philip
    SURFACE SCIENCE, 2019, 681 : 64 - 69
  • [46] The Strain Rate Effect on the Buckling of Single-Layer MoS2
    Jin-Wu Jiang
    Scientific Reports, 5
  • [47] A Revisit to High Thermoelectric Performance of Single-layer MoS2
    Zelin Jin
    Quanwen Liao
    Haisheng Fang
    Zhichun Liu
    Wei Liu
    Zhidong Ding
    Tengfei Luo
    Nuo Yang
    Scientific Reports, 5
  • [48] Orientation Dependent Thermal Conductance in Single-Layer MoS2
    Jin-Wu Jiang
    Xiaoying Zhuang
    Timon Rabczuk
    Scientific Reports, 3
  • [49] Ideal strength and phonon instability in single-layer MoS2
    Li, Tianshu
    PHYSICAL REVIEW B, 2012, 85 (23)
  • [50] Protected hole valley states in single-layer MoS2
    Bussolotti, Fabio
    Kawai, Hiroyo
    Wong, Swee Liang
    Goh, Kuan Eng Johnson
    PHYSICAL REVIEW B, 2019, 99 (04)