Modeling of supercritical drying of ethanol-soaked silica aerogels with carbon dioxide

被引:44
|
作者
Mukhopadhyay, Mamata [1 ]
Rao, Bhatta Sankara [1 ]
机构
[1] Indian Inst Technol, Dept Chem Engn, Bombay 400076, Maharashtra, India
关键词
supercritical drying; silica aerogel; SCCO2; dissolution; swelling; solvent removal by spillage;
D O I
10.1002/jctb.1996
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
BACKGROUND: Supercritical drying (SCD) of aerogels entails replacement of the primary solvent ethanol in the porous solid network with supercritical carbon dioxide (SCCO2) without a vapor-liquid interface to avoid collapse of the pores by capillary forces. The present paper proposes a mechanistic SCD model for producing crack-free aerogels and elucidates the requirement of such a process by focusing on mass transfer modeling for silica aerogel with parallel cylindrical mesopores having a known pore size distribution. RESULTS: The model incorporates extraction of ethanol by two-way mass transfer of SCCO2 and ethanol to and from the wet gel until it attains 99.995 mole% CO2. Initially the pores are filled with pure ethanol and the liquid volume swells due to dissolution of CO2, rendering spillage of the excess liquid volume. Thus ethanol is removed by spillage as well as by evaporation from the open end of the pores, followed by convective mass transfer. The convective velocity of SCCO2 needs to be kept less than a critical value to obviate vapor-liquid interface within the pores at any time. Simulation results indicate that initially the ratio of spillage to convective transport is very high (16-20) which asymptotically decreases to zero with time as the mixture in the pores attains critical mole fraction (MCM). This indicates that the bulk of the ethanol is removed by spillage caused by diffusion of SCCO2 into the pores, rather than by convective evaporation. Their ratio is higher at lower temperature, higher pressure, lower flow rate and thicker gel, similar to the drying time. CONCLUSIONS: The mechanistic model for SCD of a silica aerogel with SCCO2 illustrates that a vapor-liquid interface within the pores at any time can be avoided by keeping the convective velocity of SCCO2 less than a critical value. Most of the ethanol is removed by spillage as a result of SCCO2 dissolution in the pore liquid, rather than by convective evaporation. Higher pressure, lower temperature, lower SCCO2 velocity and thicker gel slow down the SCD process and are conducive to producing crack-free transparent aerogels. (C) 2008 Society of Chemical Industry.
引用
收藏
页码:1101 / 1109
页数:9
相关论文
共 50 条
  • [31] AMBIENT-TEMPERATURE SUPERCRITICAL DRYING OF TRANSPARENT SILICA AEROGELS.
    Tewari, Param H.
    Hunt, Arlon J.
    Lofftus, Kevin D.
    1600, (03): : 9 - 10
  • [32] Drying of supercritical carbon dioxide with membrane processes
    Lohaus, Theresa
    Scholz, Marco
    Koziara, Beata T.
    Benes, Nieck E.
    Wessling, Matthias
    JOURNAL OF SUPERCRITICAL FLUIDS, 2015, 98 : 137 - 146
  • [33] Drying of coals by using supercritical carbon dioxide
    Iwai, Y
    Amiya, M
    Murozono, T
    Arai, Y
    Sakanishi, K
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1998, 37 (07) : 2893 - 2896
  • [34] The fabrication and characterization of carbon aerogels by gelation and supercritical drying in isopropanol
    Fu, RW
    Zheng, B
    Liu, J
    Dresselhaus, MS
    Dresselhaus, G
    Satcher, JH
    Baumann, TE
    ADVANCED FUNCTIONAL MATERIALS, 2003, 13 (07) : 558 - 562
  • [35] Organic and carbon aerogels from the NaOH-catalyzed polycondensation of resorcinol-furfural and supercritical drying in ethanol
    Wu, DC
    Fu, RW
    Yu, ZQ
    JOURNAL OF APPLIED POLYMER SCIENCE, 2005, 96 (04) : 1429 - 1435
  • [36] Heterogeneous Fenton catalysts based on mesoporous silica gels prepared by drying in supercritical carbon dioxide
    Kon'kova, T. V.
    Katalevich, A. M.
    Gurikov, P. A.
    Rysev, A. P.
    Men'shutina, N. V.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B, 2014, 8 (08) : 999 - 1003
  • [37] Heterogeneous Fenton catalysts based on mesoporous silica gels prepared by drying in supercritical carbon dioxide
    T. V. Kon’kova
    A. M. Katalevich
    P. A. Gurikov
    A. P. Rysev
    N. V. Men’shutina
    Russian Journal of Physical Chemistry B, 2014, 8 : 999 - 1003
  • [38] Breakup of ethanol droplets in supercritical carbon dioxide
    Baldyga, J
    Kubicki, D
    Smith, K
    INZYNIERIA CHEMICZNA I PROCESOWA, 2004, 25 (03): : 635 - 640
  • [39] Nanoengineered silica-polymer composite aerogels with no need for supercritical fluid drying
    Leventis, N
    Palczer, A
    McCorkle, L
    Zhang, GH
    Sotiriou-Leventis, C
    JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2005, 35 (02) : 99 - 105
  • [40] Clean Synthesis of Silver-Silica Aerogels via Supercritical Drying and Impregnation
    Li, Xiuyan
    Shen, Jun
    Du, Ai
    Zhang, Zhihua
    Yang, Huiyu
    GREEN BUILDING MATERIALS III, 2012, 509 : 220 - 229