Non-Iterative Recovery from Nonlinear Observations using Generative Models

被引:7
|
作者
Liu, Jiulong [1 ]
Liu, Zhaoqiang [2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, LSEC, Beijing 100190, Peoples R China
[2] Natl Univ Singapore, Dept Comp Sci, Singapore, Singapore
关键词
SINGLE-INDEX MODELS; VARIABLE SELECTION; LIMITS;
D O I
10.1109/CVPR52688.2022.00033
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we aim to estimate the direction of an underlying signal from its nonlinear observations following the semi-parametric single index model (SIM). Unlike for conventional compressed sensing where the signal is assumed to be sparse, we assume that the signal lies in the range of an L-Lipschitz continuous generative model with bounded k-dimensional inputs. This is mainly motivated by the tremendous success of deep generative models in various real applications. Our reconstruction method is noniterative (though approximating the projection step may require an iterative procedure) and highly efficient, and it is shown to attain the near-optimal statistical rate of order root(k log L)/m, where m is the number of measurements. We consider two specific instances of the SIM, namely noisy 1-bit and cubic measurement models, and perform experiments on image datasets to demonstrate the efficacy of our method. In particular, for the noisy 1-bit measurement model, we show that our non-iterative method significantly outperforms a state-of-the-art iterative method in terms of both accuracy and efficiency.
引用
收藏
页码:233 / 243
页数:11
相关论文
共 50 条
  • [21] A simple non-iterative uncoupled algorithm for nonlinear pore-dynamic analyses
    Soares Jr, Delfim
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 357
  • [22] Determining static stability boundaries using a non-iterative method
    Makarov, Yuri V.
    Ma, Jian
    Dong, ZhaoYang
    2007 IEEE POWER ENGINEERING SOCIETY GENERAL MEETING, VOLS 1-10, 2007, : 2651 - +
  • [23] Solution of Inverse Geometric Problems Using a Non-Iterative MFS
    Karageorghis, Andreas
    Lesnic, Daniel
    Marin, Liviu
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2024, 35 (03) : 553 - 578
  • [24] Non-Iterative Planar Visual Odometry using a Monocular Camera
    Farraj, Firas Abi
    Asmar, Daniel
    Shammas, Elie
    Elhajj, Imad
    2013 16TH INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS (ICAR), 2013,
  • [25] GLOBAL NON-ITERATIVE DESIGN OPTIMIZATION USING MONOTONICITY ANALYSIS
    PAPALAMBROS, P
    WILDE, DJ
    JOURNAL OF MECHANICAL DESIGN-TRANSACTIONS OF THE ASME, 1979, 101 (04): : 645 - 649
  • [26] Non-iterative structural topology optimization using deep learning
    Li, Baotong
    Huang, Congjia
    Li, Xin
    Zheng, Shuai
    Hong, Jun
    COMPUTER-AIDED DESIGN, 2019, 115 : 172 - 180
  • [27] Non-iterative methods for dynamic analysis of nonlinear velocity-dependent problems
    Chang, Shuenn-Yih
    NONLINEAR DYNAMICS, 2020, 101 (02) : 1473 - 1500
  • [28] NICE: Superpixel Segmentation Using Non-Iterative Clustering with Efficiency
    Li, Cheng
    Guo, Baolong
    Wang, Geng
    Zheng, Yan
    Liu, Yang
    He, Wangpeng
    APPLIED SCIENCES-BASEL, 2020, 10 (12):
  • [29] A non-iterative derivative-free method for nonlinear ordinary differential equations
    Ramos, J. I.
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 203 (02) : 672 - 678
  • [30] Non-iterative methods for dynamic analysis of nonlinear velocity-dependent problems
    Shuenn-Yih Chang
    Nonlinear Dynamics, 2020, 101 : 1473 - 1500