DISCRIMINATING CODES IN BIPARTITE GRAPHS: BOUNDS, EXTREMAL CARDINALITIES, COMPLEXITY

被引:20
|
作者
Charbit, Emmanuel [1 ]
Charon, Irene [1 ,2 ]
Cohen, Gerard [1 ,2 ]
Hudry, Olivier [1 ,2 ]
Lobstein, Antoine [1 ,2 ]
机构
[1] TELECOM ParisTech, Inst TELECOM, F-75634 Paris 13, France
[2] CNRS, LTCI, UMR 5141, F-75634 Paris 13, France
关键词
Graph theory; bipartite graphs; discriminating codes; identifying codes; locating-dominating codes; separating codes; complexity;
D O I
10.3934/amc.2008.2.403
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Consider an undirected bipartite graph G = (V = I boolean OR A, E), with no edge inside I nor A. For any vertex v is an element of V, let N(v) be the set of neighbours of v. A code C subset of A is said to be discriminating if all the sets N(i) boolean AND C, i is an element of I, are nonempty and distinct. We study some properties of discriminating codes. In particular, we give bounds on the minimum size of these codes, investigate graphs where minimal discriminating codes have size close to the upper bound, or give the exact minimum size in particular graphs; we also give an NP-completeness result.
引用
收藏
页码:403 / 420
页数:18
相关论文
共 50 条
  • [31] Bounds and extremal graphs for Harary energy
    Alhevaz, A.
    Baghipur, M.
    Ganie, H. A.
    Das, K. C.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (05)
  • [32] Lower Bounds for the Energy of (Bipartite) Graphs
    Altindag, S. Burcu Bozkurt
    Bozkurt, Durmus
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2017, 77 (01) : 9 - 14
  • [33] ON THE COMPLEXITY OF COLORING BY SUPERDIGRAPHS OF BIPARTITE GRAPHS
    BANGJENSEN, J
    HELL, P
    MACGILLIVRAY, G
    DISCRETE MATHEMATICS, 1992, 109 (1-3) : 27 - 44
  • [34] On extremal bipartite graphs with given number of cut edges
    Chen, Hanlin
    Wu, Renfang
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2020, 12 (02)
  • [35] Extremal Planar Matchings of Inhomogenous Random Bipartite Graphs
    Ganesan, Ghurumuruhan
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2025, 87 (01): : 134 - 156
  • [36] Extremal K(s,t)-free bipartite graphs
    Balbuena, C.
    Garcia-Vazquez, P.
    Marcote, X.
    Valenzuela, J. C.
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2008, 10 (03): : 35 - 48
  • [37] Bounds and extremal graphs for the energy of complex unit gain graphs
    Samanta, Aniruddha
    Kannan, M. Rajesh
    arXiv, 2023,
  • [38] Sharp bounds on the size of pairable graphs and pairable bipartite graphs
    Che, Zhongyuan
    Chen, Zhibo
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2015, 62 : 172 - 183
  • [39] Upper and lower bounds for the energy of bipartite graphs
    Rada, J
    Tineo, A
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 289 (02) : 446 - 455
  • [40] Lower bounds for the Laplacian energy of bipartite graphs
    Palacios, Jose Luis
    DISCRETE APPLIED MATHEMATICS, 2018, 239 : 213 - 217